g-C3N4 S-Scheme Homojunction through Van der Waals Interface Regulation by Intrinsic Polymerization Tailoring for Enhanced Photocatalytic H2 Evolution and CO2 Reduction

被引:0
作者
Zhu, Xianglin [1 ,2 ]
Zhou, Enlong [4 ]
Tai, Xishi [1 ]
Zong, Huibin [2 ]
Yi, Jianjian [5 ]
Yuan, Zhimin [1 ]
Zhao, Xingling [1 ]
Huang, Peng [3 ]
Xu, Hui [2 ]
Jiang, Zaiyong [1 ]
机构
[1] Weifang Univ, Sch Chem & Chem Engn & Environm Engn, Weifang 261061, Peoples R China
[2] Jiangsu Univ, Inst Energy Res, Sch Chem & Chem Engn, Zhenjiang 212013, Jiangsu, Peoples R China
[3] Jiangsu Normal Univ, Sch Chem & Mat Sci, Xuzhou 221116, Jiangsu, Peoples R China
[4] Shandong Agr Univ, Coll Chem & Mat Sci, Tai An 271018, Peoples R China
[5] Yangzhou Univ, Coll Environm Sci & Engn, Yangzhou 225127, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Carbon Nitride; Homojunction; S-Scheme; Photocatalytic hydrogen evolution; Photocatalytic CO2 reduction; CHARGE MIGRATION; NANOSHEETS; NITRIDE; OXIDATION; SITES; WATER; O-2;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The effective S-scheme homojunction relies on the precise regulation of band structure and construction of advantaged charge migration interfaces. Here, the electronic structural properties of g-C3N4 were modulated through meticulous polymerization of self-assembled supramolecular precursors. Experimental and DFT results indicate that both the intrinsic bandgap and surface electronic characteristics were adjusted, leading to the formation of an in-situ reconstructed homojunction interface facilitated by intrinsic van der Waals forces. The homojunction catalyst, composed of g-C3N4 nanodots and ultra-thin g-C3N4 nanoflakes, exhibited a significant S-scheme carrier separation mechanism, which enhances the utilization of electrons and holes. Consequently, under AM 1.5 light irradiation (~100 mW/cm(2)), the g-C3N4 homojunction photocatalyst achieved a remarkable hydrogen evolution rate of 580 mu mol h(-1). Furthermore, a reversed CH4 selectivity in CO2 reduction was observed, yielding 80.30 mu mol g(-1) h(-1) with a selectivity of 96.86 %, in contrast to the performance of bulk g-C3N4, which produced only 2.22 mu mol g(-1) h(-1) with the 15.69 % CH4 selectivity. These findings not only highlight the significant potential of the g-C3N4 homojunction photocatalyst for hydrogen production and CO2 reduction but also propose a superior and effective strategy for optimizing the structural properties of g-C3N4, which are crucial for the design of photocatalytic reactions.
引用
收藏
页数:12
相关论文
共 63 条
[1]   Designing S-scheme heterojunction via in situ converting partial NH2-MIL-68 into defective In2O3 for [J].
Chang, Ying ;
Zhao, Xiuying ;
Jiang, Zaiyong ;
Gao, Yongze ;
Zhou, Enlong ;
Zhu, Shuhua ;
Yuan, Zhimin ;
Pang, Huan .
CHEMICAL ENGINEERING JOURNAL, 2024, 501
[2]   Fast Photoelectron Transfer in (Cring)-C3N4 Plane Heterostructural Nanosheets for Overall Water Splitting [J].
Che, Wei ;
Cheng, Weiren ;
Yao, Tao ;
Tang, Fumin ;
Liu, Wei ;
Su, Hui ;
Huang, Yuanyuan ;
Liu, Qinghua ;
Liu, Jinkun ;
Hu, Fengchun ;
Pan, Zhiyun ;
Sun, Zhihu ;
Wei, Shiqiang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (08) :3021-3026
[3]   Work-function-induced Interfacial Built-in Electric Fields in Os-OsSe2 Heterostructures for Active Acidic and Alkaline Hydrogen Evolution [J].
Chen, Ding ;
Lu, Ruihu ;
Yu, Ruohan ;
Dai, Yuhang ;
Zhao, Hongyu ;
Wu, Dulan ;
Wang, Pengyan ;
Zhu, Jiawei ;
Pu, Zonghua ;
Chen, Lei ;
Yu, Jun ;
Mu, Shichun .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (36)
[4]   Strongly coupled NH2NH-modified high crystallinity Graphene quantum dots/Carbon Nitride for efficient photocatalytic hydrogen evolution [J].
Chen, Hanxiang ;
Zhu, Xianglin ;
Zong, Huibin ;
Zeng, Guixin ;
Miao, Honghai ;
Mo, Zhao ;
Hossain, Md Shouquat ;
Yan, Jia ;
Wang, Liang ;
Xu, Hui .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (94) :36818-36824
[5]   Construction of brown mesoporous carbon nitride with a wide spectral response for high performance photocatalytic H2 evolution [J].
Chen, Jinzhou ;
Zhu, Xianglin ;
Jiang, Zhifeng ;
Zhang, Wei ;
Ji, Haiyan ;
Zhu, Xingwang ;
Song, Yanhua ;
Mo, Zhao ;
Li, Huaming ;
Xu, Hui .
INORGANIC CHEMISTRY FRONTIERS, 2022, 9 (01) :103-110
[6]   Integrating coral-like morphology into cyano-containing carbon nitride towards efficient photocatalytic H2 evolution and Cr(VI) reduction [J].
Chen, Xueru ;
Li, Xue ;
Song, Liang ;
Chen, Ruijie ;
Li, Hongping ;
Ding, Jing ;
Wan, Hui ;
Guan, Guofeng .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (48) :20803-20815
[7]   Ultrafast electron transfer at the In2O3/Nb2O5 S-scheme interface for CO2 photoreduction [J].
Deng, Xianyu ;
Zhang, Jianjun ;
Qi, Kezhen ;
Liang, Guijie ;
Xu, Feiyan ;
Yu, Jiaguo .
NATURE COMMUNICATIONS, 2024, 15 (01)
[8]   Construction of carbonized polymer dots/potassium doped carbon nitride nanosheets Van der Waals heterojunction by ball milling method for facilitating photocatalytic CO2 reduction performance in pure water [J].
Dong, Jintao ;
Zhao, Junze ;
Yan, Xingwang ;
Li, Lina ;
Liu, Gaopeng ;
Ji, Mengxia ;
Wang, Bin ;
She, Yuanbin ;
Li, Huaming ;
Xia, Jiexiang .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2024, 351
[9]   A novel g-C3N4/g-C3N4_x homojunction with efficient interfacial charge transfer for photocatalytic degradation of atrazine and tetracycline [J].
Feng, Chengyang ;
Ouyang, Xilian ;
Deng, Yaocheng ;
Wang, Jiajia ;
Tang, Lin .
JOURNAL OF HAZARDOUS MATERIALS, 2023, 441
[10]   In-situ exfoliation of porous carbon nitride nanosheets for enhanced hydrogen evolution [J].
Gao, Xiaochun ;
Feng, Jin ;
Su, Dawei ;
Ma, Yuchen ;
Wang, Guoxiu ;
Ma, Houyi ;
Zhang, Jintao .
NANO ENERGY, 2019, 59 :598-609