Computational exploration of codoped Fe and Ru single-atom catalysts for the oxygen reduction reaction

被引:0
作者
Jia, Haojun [1 ,2 ]
Duan, Chenru [1 ,2 ]
Terrones, Gianmarco G. [1 ]
Kevlishvili, Ilia [1 ]
Kulik, Heather J. [1 ,2 ]
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[2] MIT, Dept Chem, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Single atom catalysts; Density functional theory; Oxygen reduction reaction; Machine learning; DENSITY-FUNCTIONAL THEORY; EFFECTIVE CORE POTENTIALS; MOLECULAR CALCULATIONS; DESIGN RULES; METAL ATOMS; TRENDS; ELECTROCATALYSTS; ACTIVATION; DISCOVERY; OXIDATION;
D O I
10.1016/j.jcat.2025.116163
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The oxygen reduction reaction (ORR) is essential in a range of energy conversion and storage technologies, including fuel cells and metal-air batteries. Single-atom catalysts (SACs), characterized by isolated metal atoms especially in doped graphitic substrates, have emerged as promising ORR catalysts due to their unique electronic and geometric properties. We employ virtual high-throughput screening (VHTS) with density functional theory and machine learning (ML) to explore the potential of codoped SACs with Fe and Ru centers for optimizing ORR reaction energetics. We also develop ML models, trained on VHTS data, that offer increased predictive accuracy of reaction energetics, surpassing the capabilities of conventional linear free energy relationship approaches. The results underscore codoping as an effective strategy for tuning SAC properties, enabling the rational design of high-performance ORR catalysts.
引用
收藏
页数:9
相关论文
共 100 条
[1]   Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces [J].
Abild-Pedersen, F. ;
Greeley, J. ;
Studt, F. ;
Rossmeisl, J. ;
Munter, T. R. ;
Moses, P. G. ;
Skulason, E. ;
Bligaard, T. ;
Norskov, J. K. .
PHYSICAL REVIEW LETTERS, 2007, 99 (01)
[2]   Large-scale comparison of Fe and Ru polyolefin C-H activation catalysts [J].
Adamji, Husain ;
Kevlishvili, Ilia ;
Nandy, Aditya ;
Roman-Leshkov, Yuriy ;
Kulik, Heather J. .
JOURNAL OF CATALYSIS, 2024, 431
[3]   Computational Discovery of Stable Metal-Organic Frameworks for Methane-to-Methanol Catalysis [J].
Adamji, Husain ;
Nandy, Aditya ;
Kevlishvili, Ilia ;
Roman-Leshkov, Yuriy ;
Kulik, Heather J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (26) :14365-14378
[4]  
[Anonymous], **DATA OBJECT**, DOI 10.5281/zenodo.14889017
[5]  
Astruc D., 2020, ACS Publications, V120
[6]   Convolutional Neural Network of Atomic Surface Structures To Predict Binding Energies for High-Throughput Screening of Catalysts [J].
Back, Seoin ;
Yoon, Junwoong ;
Tian, Nianhan ;
Zhong, Wen ;
Tran, Kevin ;
Ulissi, Zachary W. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2019, 10 (15) :4401-4408
[7]   The Bronsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis [J].
Bligaard, T ;
Norskov, JK ;
Dahl, S ;
Matthiesen, J ;
Christensen, CH ;
Sehested, J .
JOURNAL OF CATALYSIS, 2004, 224 (01) :206-217
[8]   Recent Progress in Non-Precious Catalysts for Metal-Air Batteries [J].
Cao, Ruiguo ;
Lee, Jang-Soo ;
Liu, Meilin ;
Cho, Jaephil .
ADVANCED ENERGY MATERIALS, 2012, 2 (07) :816-829
[9]  
Cao Y., 2025, Angew. Chem. Int. Ed., V64
[10]   Isolated Single Iron Atoms Anchored on N-Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction [J].
Chen, Yuanjun ;
Ji, Shufang ;
Wang, Yanggang ;
Dong, Juncai ;
Chen, Wenxing ;
Li, Zhi ;
Shen, Rongan ;
Zheng, Lirong ;
Zhuang, Zhongbin ;
Wang, Dingsheng ;
Li, Yadong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (24) :6937-6941