Study and analysis of ion cyclotron resonance heating scenarios for ADITYA-U Tokamak

被引:0
作者
Jha, Akhil [1 ,2 ]
Singh, Amit K. [1 ,2 ,3 ]
Brahmakshatriya, Devarshi [4 ]
Raj, Harshita [2 ,3 ]
Ghosh, Joydeep [2 ,3 ]
Trivedi, R. G. [1 ,2 ]
Bandyopadhyay, Indranil [1 ,2 ,3 ]
Sauter, Olivier [5 ]
机构
[1] ITER India, Inst Plasma Res, Bhat, Gandhinagar 382428, Gujarat, India
[2] Inst Plasma Res, Bhat, Gandhinagar 382428, Gujarat, India
[3] Homi Bhabha Natl Inst HBNI, Anushaktinagar, Mumbai 400094, Maharashtra, India
[4] Inst Adv Res, Gandhinagar 382426, Gujarat, India
[5] Ecole Polytech Fed Lausanne EPFL, Swiss Plasma Ctr SPC, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
ICRH; simulations; ADITYA-U; circular and shaped magnetic equilibrium; fast wave; antenna; CURRENT DRIVE; POWER DEPOSITION; ICRH; EFFICIENCY; PLASMA; RANGE;
D O I
10.1088/1741-4326/add54a
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This study provides a detailed analysis of ion cyclotron resonance heating (ICRH) scenarios for ADITYA-U Tokamak which is a crucial technique for core plasma heating in magnetically confined devices. The ICRH code LION is used to study the cyclotron resonance heating of hydrogen minority ions in deuterium plasma. The resonant heating of the minority hydrogen ions is analyzed for both fundamental and second harmonic frequencies which coincide with the second and fourth harmonics of Deuterium ions, respectively. The LION code, a full-wave solver based on the finite hybrid element method, enables detailed modeling of fast magnetosonic waves in the complex, axisymmetric geometry of the ADITYA-U Tokamak. A parametric study of power deposition both total and on individual species has been performed using several key parameters including wave frequency, toroidal wave number ( k parallel to), electron temperature, and minority ion concentration. Additionally, we examine the impact of both circular and shaped plasma equilibrium conditions on the distribution of the absorbed wave power. Detailed simulations suggest that minority ion heating is quite effective in ADITYA-U plasma with a core density of 2x1019m-3 and an electron temperature of 0.35 keV at lower toroidal wave number (1-8) and minority concentration of up to 15%. The second harmonic minority heating scheme is quite promising with significant power deposition (98%) on hydrogen ions in ADITYA-U tokamak.
引用
收藏
页数:20
相关论文
共 49 条
[1]  
Beaumont Bertrand, 2017, EPJ Web of Conferences, V157, DOI 10.1051/epjconf/201715702002
[2]   Modeling of high harmonic fast wave scenarios for NSTX Upgrade [J].
Bertelli, N. ;
Ono, M. ;
Jaeger, E. F. .
NUCLEAR FUSION, 2019, 59 (08)
[3]   Influence of an evanescence layer in front of the antenna on the coupling efficiency of ion cyclotron waves [J].
Bilato, R ;
Brambilla, M ;
Hartmann, DA ;
Parisot, A .
NUCLEAR FUSION, 2005, 45 (02) :L5-L7
[4]   Cyclotron resonance heating systems for SST-1 [J].
Bora, D ;
Kumar, S ;
Singh, R ;
Sathyanarayana, K ;
Kulkarni, SV ;
Mukherjee, A ;
Shukla, BK ;
Singh, JP ;
Srinivas, YSS ;
Khilar, P ;
Kushwah, M ;
Kumar, R ;
Sugandhi, R ;
Chattopadhyay, P ;
Raghuraj, S ;
Jadav, HM ;
Kadia, B ;
Singh, M ;
Babu, R ;
Jatin, P ;
Agrajit, G ;
Biswas, P ;
Bhardwaj, A ;
Rathi, D ;
Siju, G ;
Parmar, K ;
Varia, A ;
Dani, S ;
Pragnesh, D ;
Virani, C ;
Patel, H ;
Dharmesh, P ;
Makwana, AR ;
Kirit, P ;
Harsha, M ;
Soni, J ;
Yadav, V ;
Bhattacharya, DS ;
Shmelev, M ;
Belousov, V ;
Kurbatov, V ;
Belov, Y ;
Tai, E .
NUCLEAR FUSION, 2006, 46 (03) :S72-S84
[5]   Advances in numerical simulations of ion cyclotron heating of non-Maxwellian plasmas [J].
Brambilla, M. ;
Bilato, R. .
NUCLEAR FUSION, 2009, 49 (08)
[6]   Second-harmonic ion cyclotron resonance heating scenarios of Aditya tokamak plasma [J].
Chattopadhyay, Asim Kumar ;
Kulkarni, S. V. ;
Srinivasan, R. .
PRAMANA-JOURNAL OF PHYSICS, 2015, 85 (04) :713-721
[7]   Numerical study of minority ion heating scenarios in a spherical tokamak plasma [J].
Chen, You ;
Yin, Lan ;
Peng, Yaoyi ;
Ma, Wankun ;
Zhou, Fangbei ;
Wang, Shuangshuang ;
Gong, Xueyu .
PHYSICS OF PLASMAS, 2024, 31 (03)
[8]   THEORY OF FAST WAVE CURRENT DRIVE FOR TOKAMAK PLASMAS [J].
CHIU, SC ;
CHAN, VS ;
HARVEY, RW ;
PORKOLAB, M .
NUCLEAR FUSION, 1989, 29 (12) :2175-2186
[9]   Predictions of improved confinement in SPARC via energetic particle turbulence stabilization [J].
Di Siena, A. ;
Rodriguez-Fernandez, P. ;
Howard, N. T. ;
Navarro, A. Banon ;
Bilato, R. ;
Goerler, T. ;
Poli, E. ;
Merlo, G. ;
Wright, J. ;
Greenwald, M. ;
Jenko, F. .
NUCLEAR FUSION, 2023, 63 (03)
[10]   Variational approach to radiofrequency waves in magnetic fusion devices [J].
Dumont, R. J. .
NUCLEAR FUSION, 2009, 49 (07)