A cloud-based spatiotemporal data warehouse approach

被引:0
作者
Garani, Georgia [1 ]
Cassavia, Nunziato [2 ]
Savvas, Ilias K. [1 ]
机构
[1] Univ Thessaly, Gaiopolis 41500, Larissa, Greece
[2] Univ Calabria, Via Pietro Bucci, I-87036 Arcavacata Di Rende, Italy
关键词
cloud computing; big data; hive; business intelligence; data warehouses; cloud based data warehouses; spatiotemporal data; spatiotemporal objects; starnest schema; OLAP; online analytical processing; BIG DATA;
D O I
10.1504/IJGUC.2025.146278
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The arrival of the big data era introduces new necessities for accommodating data access and analysis by organisations. The evolution of data is three-fold, increase in volume, variety, and complexity. The majority of data nowadays is generated in the cloud. Cloud data warehouses profit from the benefits of the cloud by facilitating the integration of data in the cloud. A data warehouse is developed in this paper, which supports both spatial and temporal dimensions. The research focuses on proposing a general design for spatiobitemporal objects implemented by nested dimension tables using the starnest schema approach. Experimental results reflect that the parallel processing of such data on the cloud can process OLAP queries efficiently. Furthermore, by increasing the number of computational nodes results in a significant reduction of queries' time execution. The feasibility, scalability, and utility of the proposed technique for querying spatiotemporal data are demonstrated.
引用
收藏
页码:202 / 210
页数:10
相关论文
共 19 条
[1]   A novel approach for intelligent distribution of data warehouses [J].
Agarwal, Abhay Kumar ;
Badal, Neelendra .
EGYPTIAN INFORMATICS JOURNAL, 2016, 17 (02) :147-159
[2]   Cloud BI: Future of business intelligence in the Cloud [J].
Al-Aqrabi, Hussain ;
Liu, Lu ;
Hill, Richard ;
Antonopoulos, Nick .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2015, 81 (01) :85-96
[3]  
Cassavia Nunziato, 2014, Data 2014 3rd International Conference on Data Management Technologies and Applications, P419
[4]   Discovering User Behavioral Features to Enhance Information Search on Big Data [J].
Cassavia, Nunziato ;
Masciari, Elio ;
Pulice, Chiara ;
Sacca, Domenico .
ACM TRANSACTIONS ON INTERACTIVE INTELLIGENT SYSTEMS, 2017, 7 (02)
[5]  
Chen WH, 2017, 2017 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (ICCIA), P36, DOI 10.1109/CIAPP.2017.8167056
[6]   The Snowflake Elastic Data Warehouse [J].
Dageville, Benoit ;
Cruanes, Thierry ;
Zukowski, Marcin ;
Antonov, Vadim ;
Avanes, Artin ;
Bock, Jon ;
Claybaugh, Jonathan ;
Engovatov, Daniel ;
Hentschel, Martin ;
Huang, Jiansheng ;
Lee, Allison W. ;
Motivala, Ashish ;
Munir, Abdul Q. ;
Pelley, Steven ;
Povinec, Peter ;
Rahn, Greg ;
Triantafyllis, Spyridon ;
Unterbrunner, Philipp .
SIGMOD'16: PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2016, :215-226
[7]  
Deng C., 2012, FEDERATEDCLOUDS 2012, P44
[8]  
Garani G., 2019, International Journal of Spatial, Temporal and Multimedia Information Systems, V1, P232
[9]   A Data Warehouse Approach for Business Intelligence [J].
Garani, Georgia ;
Chernov, Andrey, V ;
Savvas, Ilias K. ;
Butakova, Maria A. .
2019 IEEE 28TH INTERNATIONAL CONFERENCE ON ENABLING TECHNOLOGIES: INFRASTRUCTURE FOR COLLABORATIVE ENTERPRISES (WETICE), 2019, :70-75
[10]   Integrating Star and Snowflake Schemas in Data Warehouses [J].
Garani, Georgia ;
Helmer, Sven .
INTERNATIONAL JOURNAL OF DATA WAREHOUSING AND MINING, 2012, 8 (04) :22-40