Ultra-Sensitive Short-Wave Infrared Single-Photon Detection Using a Silicon Single-Electron Transistor

被引:1
作者
Sudha, Pooja [1 ]
Miyagawa, Shogo [2 ]
Samanta, Arup [1 ,3 ]
Moraru, Daniel [2 ]
机构
[1] Indian Inst Technol Roorkee, Dept Phys, Quantum Nanosci & Technol Lab, Roorkee 247667, Uttaranchal, India
[2] Shizuoka Univ, Res Inst Elect, 3-5-1 Johoku,Chuo-ku, Hamamatsu, Shizuoka 4328011, Japan
[3] Indian Inst Technol Roorkee, Ctr Nanotechnol, Roorkee 247667, Uttaranchal, India
关键词
all-silicon technology; random telegraph signal; short-wave infrared; single-electron transistor; single-photon detector;
D O I
10.1002/aelm.202400714
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ultra-sensitive short-wave infrared (SWIR) photon detection is a crucial aspect of ongoing research in quantum technology. However, developing such detectors on a CMOS-compatible silicon technological platform has been challenging due to the low absorption coefficient for silicon in the SWIR range. In this study, a codoped silicon-based single-electron transistor (SET) in a silicon-on-insulator field-effect transistor (SOI-FET) configuration is fabricated, which successfully detects single photons in the SWIR range with ultra-high sensitivity. The detection mechanism is evidenced by the shift in the onset of the SET current peaks and by the occurrence of random telegraph signals (RTS) under light irradiation, as compared to the dark condition. The calculated sensitivity of our device, in terms of noise equivalent power (NEP), is approximate to 10-19 W Hz-1/2.
引用
收藏
页数:7
相关论文
共 26 条
[1]   Electrostatics of quantum dots in high magnetic fields and single far-infrared photon detection [J].
Astafiev, O ;
Antonov, V ;
Kutsuwa, T ;
Komiyama, S .
PHYSICAL REVIEW B, 2000, 62 (24) :16731-16743
[2]   Transport Spectroscopy of Donor/Quantum Dot Interactive System in Silicon Nano-Transistors [J].
Chakraborty, Soumya ;
Yadav, Pooja ;
Moraru, Daniel ;
Samanta, Arup .
ADVANCED QUANTUM TECHNOLOGIES, 2024, 7 (07)
[3]   Room temperature single-photon detectors for high bit rate quantum key distribution [J].
Comandar, L. C. ;
Froehlich, B. ;
Lucamarini, M. ;
Patel, K. A. ;
Sharpe, A. W. ;
Dynes, J. F. ;
Yuan, Z. L. ;
Penty, R. V. ;
Shields, A. J. .
APPLIED PHYSICS LETTERS, 2014, 104 (02)
[4]   Extended short-wave infrared linear and Geiger mode avalanche photodiodes, based on 6.1 Å materials [J].
Craig, A. P. ;
Jain, M. ;
Meriggi, L. ;
Cann, T. ;
Niblett, A. ;
Collins, X. ;
Marshall, A. R. J. .
APPLIED PHYSICS LETTERS, 2019, 114 (05)
[5]   Optimization of Charge Carrier Extraction in Colloidal Quantum Dots Short-Wave Infrared Photodiodes through Optical Engineering [J].
Georgitzikis, Epimitheas ;
Malinowski, Pawel E. ;
Maes, Jorick ;
Hadipour, Afshin ;
Hens, Zeger ;
Heremans, Paul ;
Cheyns, David .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (42)
[6]   Quantum cryptography [J].
Gisin, N ;
Ribordy, GG ;
Tittel, W ;
Zbinden, H .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :145-195
[7]   Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients [J].
Green, Martin A. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2008, 92 (11) :1305-1310
[8]   Recent Progress in Short- to Long-Wave Infrared Photodetection Using 2D Materials and Heterostructures [J].
Guan, Xinwei ;
Yu, Xuechao ;
Periyanagounder, Dharmaraj ;
Benzigar, Mercy Rose ;
Huang, Jing-Kai ;
Lin, Chun-Ho ;
Kim, Jiyun ;
Singh, Simrjit ;
Hu, Long ;
Liu, Guozhen ;
Li, Dehui ;
He, Jr-Hau ;
Yan, Feng ;
Wang, Qi Jie ;
Wu, Tom .
ADVANCED OPTICAL MATERIALS, 2021, 9 (04)
[9]   A single-photon detector in the far-infrared range [J].
Komiyama, S ;
Astafiev, O ;
Antonov, V ;
Kutsuwa, T ;
Hirai, H .
NATURE, 2000, 403 (6768) :405-407
[10]   Superconducting single-photon detectors in the mid-infrared for physical chemistry and spectroscopy [J].
Lau, Jascha A. ;
Verma, Varun B. ;
Schwarzer, Dirk ;
Wodtke, Alec M. .
CHEMICAL SOCIETY REVIEWS, 2023, 52 (03) :921-941