An easy and fast method for landfill identification by image-based deep learning

被引:0
作者
Zhi, Zhuo [1 ,2 ]
Ma, Shijun [3 ]
Chen, Jinjin [4 ]
Sun, Chuanlian [1 ,5 ]
Meng, Jing [3 ]
Yang, Zhiying [6 ]
Chen, Peipei [7 ]
Zhou, Chuanbin [1 ,5 ]
机构
[1] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Reg & Urban Ecol, Beijing 100085, Peoples R China
[2] UCL, Dept Elect & Elect Engn, London WC1E 6BT, England
[3] UCL, Bartlett Sch Sustainable Construct, London WC1E 6BT, England
[4] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08540 USA
[5] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 101408, Peoples R China
[6] Beijing Inst Technol, Sch Econ, Beijing 100081, Peoples R China
[7] Univ Cambridge, Judge Business Sch, Cambridge CB2 1AG, England
基金
中国国家自然科学基金;
关键词
Target detection; Landfill; Solid waste; Deep learning; Internimage; Contrastive learning; YOLO;
D O I
10.1016/j.resconrec.2025.108322
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Landfills are fundamental urban infrastructures, yet improper operation causes negative impacts on the environment and public health. The accurate geographic information of landfills is often lacking, limiting effective monitoring and management. We develop a methodology that leverages remote sensing and deep learning to efficiently identify landfill locations from Google Maps, which includes: (1) creating a multi-resolution image database of landfill and similar features; (2) introducing a plug-and-play target detection module based on contrastive learning to improve the model's ability to distinguish similar targets and landfills. Experimental results show that using the landfill image dataset with a spatial resolution of 2.15 m can improve detection speed and storage efficiency while ensuring detection accuracy. InternImage-CL achieves the best mAP@.5 of 0.817 with an acceptable training time of 12.75 h at this dataset. This study presents an efficient and scalable method for identifying landfills, providing a methodological basis for digital landfill management and policy development.
引用
收藏
页数:9
相关论文
共 51 条
[21]   AUTOMATIC IDENTIFICATION METHOD OF CONSTRUCTION AND DEMOLITION WASTE BASED ON DEEP LEARNING AND GAOFEN-2 DATA [J].
KunYang ;
Zhang, Chaoqun ;
Luo, Ting ;
Hu, Lei .
XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 43-B3 :1293-1299
[22]   Detection of Waste Plastics in the Environment: Application of Copernicus Earth Observation Data [J].
Lavender, Samantha .
REMOTE SENSING, 2022, 14 (19)
[23]   OLE: Orthogonal Low-rank Embedding, A Plug and Play Geometric Loss for Deep Learning [J].
Lezama, Jose ;
Qiu, Qiang ;
Muse, Pablo ;
Sapiro, Guillermo .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :8109-8118
[24]  
Liu S., 2023, Environ. Sci. Technol.
[25]   Fossil-Fuel and Food Systems Equally Dominate Anthropogenic Methane Emissions in China [J].
Liu, Shuhan ;
Liu, Kaiyun ;
Wang, Kun ;
Chen, Xingcai ;
Wu, Kai .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2023, 57 (06) :2495-2505
[26]   Swin Transformer V2: Scaling Up Capacity and Resolution [J].
Liu, Ze ;
Hu, Han ;
Lin, Yutong ;
Yao, Zhuliang ;
Xie, Zhenda ;
Wei, Yixuan ;
Ning, Jia ;
Cao, Yue ;
Zhang, Zheng ;
Dong, Li ;
Wei, Furu ;
Guo, Baining .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, :11999-12009
[27]  
Lu M., 2024, Nat. Cities, V1, P126, DOI [10.1038/s44284-023-00021-5, DOI 10.1038/S44284-023-00021-5]
[28]   SpiderID_APP: A User-Friendly APP for Spider Identification in Taiwan Using YOLO-Based Deep Learning Models [J].
Luong, Cao Thang ;
Farhan, Ali ;
Vasquez, Ross D. ;
Roldan, Marri Jmelou M. ;
Lin, Yih-Kai ;
Hsu, Shih-Yen ;
Lin, Ming-Der ;
Hsiao, Chung-Der ;
Hung, Chih-Hsin .
INVENTIONS, 2023, 8 (06)
[29]   Do residents care about urban dumps? Evidence from individual housing transaction data [J].
Mei, Yingdan ;
Qiu, Jixiang ;
Wu, Jialu ;
Meng, Lina .
LAND USE POLICY, 2021, 109
[30]  
Pant H., 2020, Waste management-a man made disaster