An easy and fast method for landfill identification by image-based deep learning

被引:0
作者
Zhi, Zhuo [1 ,2 ]
Ma, Shijun [3 ]
Chen, Jinjin [4 ]
Sun, Chuanlian [1 ,5 ]
Meng, Jing [3 ]
Yang, Zhiying [6 ]
Chen, Peipei [7 ]
Zhou, Chuanbin [1 ,5 ]
机构
[1] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Reg & Urban Ecol, Beijing 100085, Peoples R China
[2] UCL, Dept Elect & Elect Engn, London WC1E 6BT, England
[3] UCL, Bartlett Sch Sustainable Construct, London WC1E 6BT, England
[4] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08540 USA
[5] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 101408, Peoples R China
[6] Beijing Inst Technol, Sch Econ, Beijing 100081, Peoples R China
[7] Univ Cambridge, Judge Business Sch, Cambridge CB2 1AG, England
基金
中国国家自然科学基金;
关键词
Target detection; Landfill; Solid waste; Deep learning; Internimage; Contrastive learning; YOLO;
D O I
10.1016/j.resconrec.2025.108322
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Landfills are fundamental urban infrastructures, yet improper operation causes negative impacts on the environment and public health. The accurate geographic information of landfills is often lacking, limiting effective monitoring and management. We develop a methodology that leverages remote sensing and deep learning to efficiently identify landfill locations from Google Maps, which includes: (1) creating a multi-resolution image database of landfill and similar features; (2) introducing a plug-and-play target detection module based on contrastive learning to improve the model's ability to distinguish similar targets and landfills. Experimental results show that using the landfill image dataset with a spatial resolution of 2.15 m can improve detection speed and storage efficiency while ensuring detection accuracy. InternImage-CL achieves the best mAP@.5 of 0.817 with an acceptable training time of 12.75 h at this dataset. This study presents an efficient and scalable method for identifying landfills, providing a methodological basis for digital landfill management and policy development.
引用
收藏
页数:9
相关论文
共 51 条
[1]   Early Wildfire Smoke Detection Using Different YOLO Models [J].
Al-Smadi, Yazan ;
Alauthman, Mohammad ;
Al-Qerem, Ahmad ;
Aldweesh, Amjad ;
Quaddoura, Ruzayn ;
Aburub, Faisal ;
Mansour, Khalid ;
Alhmiedat, Tareq .
MACHINES, 2023, 11 (02)
[2]   Material Flow Analysis as a Tool to improve Waste Management Systems: The Case of Austria [J].
Allesch, Astrid ;
Brunner, Paul H. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2017, 51 (01) :540-551
[3]   Contribution of landfill fires to air pollution - An assessment methodology [J].
Bihalowicz, Jan Stefan ;
Rogula-Kozlowska, Wioletta ;
Krasuski, Adam .
WASTE MANAGEMENT, 2021, 125 :182-191
[4]   Waste Classification System Using Image Processing and Convolutional Neural Networks [J].
Bobulski, Janusz ;
Kubanek, Mariusz .
ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2019, PT II, 2019, 11507 :350-361
[5]   CH4 mitigation potentials from China landfills and related environmental co-benefits [J].
Cai, Bofeng ;
Lou, Ziyang ;
Wang, Jinnan ;
Geng, Yong ;
Sarkis, Joseph ;
Liu, Jianguo ;
Gao, Qingxian .
SCIENCE ADVANCES, 2018, 4 (07)
[6]   Modified YOLO network model for metaphase cell detection in antinuclear antibody images [J].
Chang, Yen-Jen ;
Wu, Yi-Da ;
Liao, Yu-Lin ;
Wang, Chien-Ho ;
Wu, Yen-Ching .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
[7]   Quantifying methane emissions from United States landfills [J].
Cusworth, Daniel H. ;
Duren, Riley M. ;
Ayasse, Alana K. ;
Jiorle, Ralph ;
Howell, Katherine ;
Aubrey, Andrew ;
Green, Robert O. ;
Eastwood, Michael L. ;
Chapman, John W. ;
Thorpe, Andrew K. ;
Heckler, Joseph ;
Asner, Gregory P. ;
Smith, Mackenzie L. ;
Thoma, Eben ;
Krause, Max J. ;
Heins, Daniel ;
Thorneloe, Susan .
SCIENCE, 2024, 383 (6690) :1499-1504
[8]  
Devesa M.R., 2021, arXiv, DOI DOI 10.48550/ARXIV.2110.08599
[9]   The long-term fates of land-disposed plastic waste [J].
Fei, Xunchang ;
Guo, Yuliang ;
Wang, Yao ;
Fang, Mingliang ;
Yin, Ke ;
He, Hongping .
NATURE REVIEWS EARTH & ENVIRONMENT, 2022, 3 (11) :733-735
[10]   Climate change affects land-disposed waste [J].
Fei, Xunchang ;
Fang, Mingliang ;
Wang, Yao .
NATURE CLIMATE CHANGE, 2021, 11 (12) :1004-1005