A NEWTON METHOD FOR SOLVING LOCALLY DEFINITE MULTIPARAMETER EIGENVALUE PROBLEMS BY MULTI-INDEX

被引:0
作者
Eisenmann, Henrik [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Geometrie & Prakt Math, D-52062 Aachen, Germany
关键词
multiparameter eigenvalue problem; ellipsoidal wave equation; Newton method; DAVIDSON TYPE METHOD; CONTINUATION METHOD;
D O I
10.1137/24M1652775
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new approach to compute eigenvalues and eigenvectors of locally definite multiparameter eigenvalue problems by their signed multi-index. The method has the interpretation of a semismooth Newton method applied to certain functions that have a unique zero. We can therefore show local quadratic convergence, and for certain extreme eigenvalues even global linear convergence of the method. Local definiteness is a weaker condition than right and left definiteness, which is often considered for multiparameter eigenvalue problems. These conditions are naturally satisfied for multiparameter Sturm--Liouville problems that arise when separation of variables can be applied to multidimensional boundary eigenvalue problems.
引用
收藏
页码:906 / 933
页数:28
相关论文
共 42 条
[1]   Numerical simulation of the whispering gallery modes in prolate spheroids [J].
Amodio, P. ;
Levitina, T. ;
Settanni, G. ;
Weinmueller, E. B. .
COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (04) :1200-1206
[2]   ON THE NUMERICAL CONSTRUCTION OF ELLIPSOIDAL WAVE-FUNCTIONS [J].
ARSCOTT, FM ;
TAYLOR, PJ ;
ZAHAR, RVM .
MATHEMATICS OF COMPUTATION, 1983, 40 (161) :367-380
[3]  
Atkinson F.V., 2011, Multiparameter Eigenvalue Problems, pxviii+283
[4]  
Atkinson F.V., 1972, Matrices and compact operators
[5]   MULTIPARAMETER STURM THEORY [J].
BINDING, P ;
BROWNE, PJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1984, 99 :173-184
[6]  
BOHTE Z., 1982, Anton Kuhelj Memorial Volume
[7]  
Clarke F. H., 1990, Optimization and Nonsmooth Analysis
[8]  
CODDINGTON EA, 1955, THEORY ORDINARY DIFF
[9]   A HOMOTOPY METHOD FOR FINDING ALL SOLUTIONS OF A MULTIPARAMETER EIGENVALUE PROBLEM [J].
Dong, Bo ;
Yu, Bo ;
Yu, Yan .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2016, 37 (02) :550-571
[10]  
Eisenmann H., 2023, THESIS U LEIPZIG