Temperature-dependent coupling characteristics in a silicon photonic crystal waveguide coupler

被引:0
作者
Sherawat, Varnam [1 ]
Kalra, Yogita [1 ]
Bokolia, Renuka [2 ]
Sinha, Ravindra Kumar [1 ,3 ]
机构
[1] Delhi Technol Univ, TIFAC Ctr Relevance & Excellence Fiber Opt & Opt C, Dept Appl Phys, Delhi, India
[2] Delhi Technol Univ, Dept Appl Phys, Delhi, India
[3] Gautam Buddha Univ, Greater Noida 201312, UP, India
关键词
Coupling length; Photonic crystal waveguide (PCW); Coupler; Temperature; Thermo-optic effect; Coupled mode theory (CMT); PRESSURE SENSOR; SLOW LIGHT; COMPACT; DESIGN; LENGTH; SWITCH; MODES;
D O I
10.1016/j.optcom.2025.131875; 10.1016/j.optcom.2025.131875
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper presents a systematic analysis of temperature-dependent coupling characteristics in a photonic crystal waveguide (PCW) coupler. Unlike previous works that primarily rely on either numerical simulations or experimental studies, our approach integrates an analytical framework based on Coupled Mode Theory (CMT) with computational validation using COMSOL Multiphysics. The proposed PCW coupler, composed of silicon rods in air, exhibits a significant reduction in coupling length, enhancing its suitability for photonic integrated circuits (PICs). Through a combination of Plane Wave Expansion (PWE) simulations and wavelength-domain modelling, we demonstrate that the coupling length decreases with increasing temperature, indicating enhanced efficiency for thermally sensitive applications. The study not only provides theoretical insights into thermo-optic coupling in PCWs but also offers a practical design strategy for compact photonic devices operating at variable temperatures.
引用
收藏
页数:9
相关论文
共 39 条
[1]   Coupling length and coupling loss in AlGaAs photonic crystal waveguides [J].
Ali L.M. .
Journal of Optics (India), 2017, 46 (02) :187-190
[2]   Slow light in photonic crystals [J].
Baba, Toshihiko .
NATURE PHOTONICS, 2008, 2 (08) :465-473
[3]   Design of photonic crystal waveguides for evanescent coupling to optical fiber tapers and integration with high-Q cavities [J].
Barclay, PE ;
Srinivasan, K ;
Painter, O .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2003, 20 (11) :2274-2284
[4]   Ultracompact and low-power optical switch based on silicon photonic crystals [J].
Beggs, Daryl M. ;
White, Thomas P. ;
O'Faolain, Liam ;
Krauss, Thomas F. .
OPTICS LETTERS, 2008, 33 (02) :147-149
[5]   Waveguidance by the photonic bandgap effect in optical fibres [J].
Broeng, J ;
Sondergaard, T ;
Barkou, SE ;
Barbeito, PM ;
Bjarklev, A .
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 1999, 1 (04) :477-482
[6]   Broadband Nonvolatile Electrically Controlled Programmable Units in Silicon Photonics [J].
Chen, Rui ;
Fang, Zhuoran ;
Froch, Johannes E. ;
Xu, Peipeng ;
Zheng, Jiajiu ;
Majumdar, Arka .
ACS PHOTONICS, 2022, 9 (06) :2142-2150
[7]   Silicon-organic hybrid thermo-optic switch based on a slot waveguide directional coupler [J].
Chiang, Li-Yuan ;
Wang, Chun-Ta ;
Pappert, Steve ;
Yu, Paul K. L. .
OPTICS LETTERS, 2022, 47 (15) :3940-3943
[8]   Design and modeling of waveguide-coupled single-mode microring resonators [J].
Chin, MK ;
Ho, ST .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1998, 16 (08) :1433-1446
[9]  
Crisp J., 1998, Introduction to Fiber Optics, DOI [DOI 10.1017/CBO9781139174770, 10.1017/CBO9781139174770]
[10]   Coupled-mode theory for light propagation through deep nonlinear gratings [J].
deSterke, CM ;
Salinas, DG ;
Sipe, JE .
PHYSICAL REVIEW E, 1996, 54 (02) :1969-1989