Quantum and Classical Communication Complexity of Permutation-Invariant Functions

被引:0
作者
Guan, Ziyi [1 ]
Huang, Yunqi [2 ]
Yao, Penghui [3 ,4 ]
Ye, Zekun [3 ]
机构
[1] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland
[2] Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Quantum Software & Informat QSI, Sydney, NSW 2007, Australia
[3] Nanjing Univ, State Key Lab Novel Software Technol, New Cornerstone Sci Lab, Nanjing 210023, Peoples R China
[4] Hefei Natl Lab, Hefei 230088, Peoples R China
基金
中国国家自然科学基金;
关键词
Complexity theory; Boolean functions; Quantum mechanics; Computational modeling; Quantum communication; Polynomials; Lower bound; Quantum computing; Quantum advantage; Protocols; Communication complexity; log-rank conjecture; permutation-invariant functions; quantum advantages; EXPONENTIAL SEPARATION; LOWER BOUNDS;
D O I
10.1109/TIT.2025.3534920
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper gives a nearly tight characterization of the quantum communication complexity of permutation-invariant Boolean functions. With such a characterization, we show that the quantum and randomized communication complexity of permutation-invariant Boolean functions are quadratically equivalent (up to a polylogarithmic factor of the input size). Our results extend a recent line of research regarding query complexity to communication complexity, showing symmetry prevents exponential quantum speedups. Furthermore, we show that the Log-rank Conjecture holds for any non-trivial total permutation-invariant Boolean function. Moreover, we establish a relationship between the quantum/classical communication complexity and the approximate rank of permutation-invariant Boolean functions. This implies the correctness of the Log-approximate-rank Conjecture for permutation-invariant Boolean functions in both randomized and quantum settings (up to a polylogarithmic factor of the input size).
引用
收藏
页码:2782 / 2799
页数:18
相关论文
共 49 条
[1]   Quantum lower bounds for the collision and the element distinctness problems [J].
Aaronson, S ;
Shi, YY .
JOURNAL OF THE ACM, 2004, 51 (04) :595-605
[2]  
Aaronson S., 2016, P 31 C COMP COMPL MA, V50, P1
[3]  
Aaronson Scott., 2014, Theory OF Computing, V10, P133, DOI DOI 10.4086/TOC.2014.V010A006
[4]   Quantum Log-Approximate-Rank Conjecture is also False [J].
Anshu, Anurag ;
Boddu, Naresh Goud ;
Touchette, Dave .
2019 IEEE 60TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2019), 2019, :982-994
[5]   Exponential Separation of Quantum Communication and Classical Information [J].
Anshu, Anurag ;
Touchette, Dave ;
Yao, Penghui ;
Yu, Nengkun .
STOC'17: PROCEEDINGS OF THE 49TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2017, :277-288
[6]   Exponential separation of quantum and classical one-way communication complexity [J].
Bar-Yossef, Ziv ;
Jayram, T. S. ;
Kerenidis, Iordanis .
SIAM JOURNAL ON COMPUTING, 2008, 38 (01) :366-384
[7]   Quantum lower bounds by polynomials [J].
Beals, R ;
Buhrman, H ;
Cleve, R ;
Mosca, M ;
De Wolf, R .
JOURNAL OF THE ACM, 2001, 48 (04) :778-797
[8]  
Belovs A, 2021, QUANTUM INF COMPUT, V21, P1261
[9]  
Ben-David S., 2016, P 11 C THEOR QUANT C, V61, P1
[10]   Symmetries, Graph Properties, and Quantum Speedups [J].
Ben-David, Shalev ;
Childs, Andrew M. ;
Gilyen, Andras ;
Kretschmer, William ;
Podder, Supartha ;
Wang, Daochen .
2020 IEEE 61ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2020), 2020, :649-660