Mechanism of OH-initiated oxidation of β-diketone at the acidic droplet interface

被引:0
作者
Chen, Yantong [1 ,2 ]
Luo, Weiyong [1 ,2 ]
Ji, Yongpeng [1 ,2 ]
Shi, Qiuju [1 ,2 ]
Kuang, Jiawei [1 ,2 ]
Ji, Yuemeng [1 ,2 ]
机构
[1] Guangdong Univ Technol, Inst Environm Hlth & Pollut Control, Guangdong Hong Kong Macao Joint Lab Contaminants E, Guangdong Key Lab Environm Catalysis & Hlth Risk C, Guangzhou 510006, Peoples R China
[2] Guangdong Univ Technol, Guangdong Basic Res Ctr Excellence Ecol Secur & Gr, Sch Environm Sci & Engn, Key Lab City Cluster Environm Safety,Minist Educ, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Acetylacetone; Air-water interface; Photooxidation; Reaction mechanism; Molecular dynamics simulations; SECONDARY ORGANIC AEROSOL; ACETYLACETONE; HYDROCARBONS; CHEMISTRY; DYNAMICS; SURFACE; OZONE; URBAN;
D O I
10.1016/j.cplett.2025.142135
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Acetylacetone (AcAc) is a typical class of /3-diketones, and its atmospheric photooxidation profoundly impact SOA formation. Hence, we performed molecular dynamics simulations to investigate the oxidation of AcAc at the acidic droplet interface. OH-addition to enol-AcAc is favorable to form OH adducts, and for keto-AcAc, Habstraction pathway is more important to produce alkyl radicals. Subsequent reactions of these intermediates occur via oxidation by O2/NO, isomerization, and decomposition to yield methylglyoxal and acetic acid, which are important SOA precursors. Our results provide an insight into the interfacial chemistry of /3-diketones and their influence on the atmospheric environment.
引用
收藏
页数:6
相关论文
共 55 条
[1]   The chemical organic reactions of (3-diketones to prepare different (3-diketone derivatives, their properties and its applications: A review [J].
Abd-alhamed, Huda ;
Keshe, Mohammad ;
Alabaas, Rasha .
RESULTS IN CHEMISTRY, 2024, 12
[2]   Reactivity of Undissociated Molecular Nitric Acid at the Air-Water Interface [J].
Anglada, Josep M. ;
Martins-Costa, Marilia T. C. ;
Francisco, Joseph S. ;
Ruiz-Lopez, Manuel F. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (01) :453-462
[3]   Temperature-Dependent Rate Constant for the Reaction of Hydroxyl Radical with 3-Hydroxy-3-methyl-2-butanone [J].
Bedjanian, Yuri .
JOURNAL OF PHYSICAL CHEMISTRY A, 2019, 123 (48) :10446-10453
[4]   Aqueous-phase ozonolysis of methacrolein and methyl vinyl ketone: a potentially important source of atmospheric aqueous oxidants [J].
Chen, Z. M. ;
Wang, H. L. ;
Zhu, L. H. ;
Wang, C. X. ;
Jie, C. Y. ;
Hua, W. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2008, 8 (08) :2255-2265
[5]   Structure-activity relationship for the estimation of OH-oxidation rate constants of carbonyl compounds in the aqueous phase [J].
Doussin, J-F ;
Monod, A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (23) :11625-11641
[6]   Stepwise Oxidation of Aqueous Dicarboxylic Acids by Gas-Phase OH Radicals [J].
Enami, Shinichi ;
Hoffmann, Michael R. ;
Colussi, Agustin J. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (03) :527-534
[7]   Metadynamics as a tool for exploring free energy landscapes of chemical reactions [J].
Ensing, B ;
De Vivo, M ;
Liu, ZW ;
Moore, P ;
Klein, ML .
ACCOUNTS OF CHEMICAL RESEARCH, 2006, 39 (02) :73-81
[8]   Separable dual-space Gaussian pseudopotentials [J].
Goedecker, S ;
Teter, M ;
Hutter, J .
PHYSICAL REVIEW B, 1996, 54 (03) :1703-1710
[9]   Accurate description of van der Waals complexes by density functional theory including empirical corrections [J].
Grimme, S .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2004, 25 (12) :1463-1473
[10]   Semiempirical GGA-type density functional constructed with a long-range dispersion correction [J].
Grimme, Stefan .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2006, 27 (15) :1787-1799