The Relationship Between Surface Meteorological Variables and Air Pollutants in Simulated Temperature Increase Scenarios in a Medium-Sized Industrial City
被引:2
作者:
Tavella, Ronan Adler
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Sao Paulo, Inst Environm Chem & Pharmaceut Sci, BR-09972270 Diadema, Brazil
Fed Univ Rio Grande, Inst Biol Sci, Rio Grande 996201900, BrazilUniv Fed Sao Paulo, Inst Environm Chem & Pharmaceut Sci, BR-09972270 Diadema, Brazil
Tavella, Ronan Adler
[1
,2
]
das Neves, Daniele Feijo
论文数: 0引用数: 0
h-index: 0
机构:
Fed Univ Rio Grande, Inst Biol Sci, Rio Grande 996201900, BrazilUniv Fed Sao Paulo, Inst Environm Chem & Pharmaceut Sci, BR-09972270 Diadema, Brazil
das Neves, Daniele Feijo
[2
]
Silveira, Gustavo de Oliveira
论文数: 0引用数: 0
h-index: 0
机构:
Fed Univ Rio Grande, Fac Med, BR-96200190 Rio Grande, BrazilUniv Fed Sao Paulo, Inst Environm Chem & Pharmaceut Sci, BR-09972270 Diadema, Brazil
Silveira, Gustavo de Oliveira
[3
]
de Azevedo, Gabriella Mello Gomes Vieira
论文数: 0引用数: 0
h-index: 0
机构:
Fed Univ Rio Grande, Fac Med, BR-96200190 Rio Grande, BrazilUniv Fed Sao Paulo, Inst Environm Chem & Pharmaceut Sci, BR-09972270 Diadema, Brazil
de Azevedo, Gabriella Mello Gomes Vieira
[3
]
Brum, Rodrigo de Lima
论文数: 0引用数: 0
h-index: 0
机构:
Fed Univ Rio Grande, Fac Med, BR-96200190 Rio Grande, BrazilUniv Fed Sao Paulo, Inst Environm Chem & Pharmaceut Sci, BR-09972270 Diadema, Brazil
Brum, Rodrigo de Lima
[3
]
Bonifacio, Alicia da Silva
论文数: 0引用数: 0
h-index: 0
机构:
Fed Univ Rio Grande, Fac Med, BR-96200190 Rio Grande, BrazilUniv Fed Sao Paulo, Inst Environm Chem & Pharmaceut Sci, BR-09972270 Diadema, Brazil
Bonifacio, Alicia da Silva
[3
]
Machado, Ricardo Arend
论文数: 0引用数: 0
h-index: 0
机构:
Fed Univ Rio Grande, Fac Med, BR-96200190 Rio Grande, BrazilUniv Fed Sao Paulo, Inst Environm Chem & Pharmaceut Sci, BR-09972270 Diadema, Brazil
Machado, Ricardo Arend
[3
]
Brum, Leticia Willrich
论文数: 0引用数: 0
h-index: 0
机构:
Fed Univ Rio Grande, Fac Med, BR-96200190 Rio Grande, BrazilUniv Fed Sao Paulo, Inst Environm Chem & Pharmaceut Sci, BR-09972270 Diadema, Brazil
Brum, Leticia Willrich
[3
]
Buffarini, Romina
论文数: 0引用数: 0
h-index: 0
机构:
Fed Univ Rio Grande, Fac Med, BR-96200190 Rio Grande, BrazilUniv Fed Sao Paulo, Inst Environm Chem & Pharmaceut Sci, BR-09972270 Diadema, Brazil
Buffarini, Romina
[3
]
论文数: 引用数:
h-index:
机构:
Adamatti, Diana Francisca
[4
]
da Silva, Flavio Manoel Rodrigues
论文数: 0引用数: 0
h-index: 0
机构:
Fed Univ Rio Grande, Inst Biol Sci, Rio Grande 996201900, Brazil
Fed Univ Rio Grande, Fac Med, BR-96200190 Rio Grande, BrazilUniv Fed Sao Paulo, Inst Environm Chem & Pharmaceut Sci, BR-09972270 Diadema, Brazil
da Silva, Flavio Manoel Rodrigues
[2
,3
]
机构:
[1] Univ Fed Sao Paulo, Inst Environm Chem & Pharmaceut Sci, BR-09972270 Diadema, Brazil
[2] Fed Univ Rio Grande, Inst Biol Sci, Rio Grande 996201900, Brazil
[3] Fed Univ Rio Grande, Fac Med, BR-96200190 Rio Grande, Brazil
[4] Univ Rio Grande, Ctr Computat Sci, Rio Grande 996201900, Brazil
This study investigated the relationship between surface meteorological variables and the levels of surface air pollutants (O3, PM10, and PM2.5) in scenarios of simulated temperature increases in Rio Grande, a medium-sized Brazilian city with strong industrial influence. This study utilized five years of daily meteorological data (from 1 January 2019 to 31 December 2023) to model atmospheric conditions and two years of daily air pollutant data (from 21 December 2021 to 20 December 2023) to simulate how pollutant levels would respond to annual temperature increases of 1 degrees C and 2 degrees C, employing a Support Vector Machine, a supervised machine learning algorithm. Predictive models were developed for both annual averages and seasonal variations. The predictive analysis results indicated that, when considering annual averages, pollutant concentrations showed a decreasing trend as temperatures increased. This same pattern was observed in seasonal scenarios, except during summer, when O3 levels increased with the simulated temperature rise. The greatest seasonal reduction in O3 occurred in winter (decreasing by 10.33% and 12.32% under 1 degrees C and 2 degrees C warming scenarios, respectively), while for PM10 and PM2.5, the most significant reductions were observed in spring. The lack of a correlation between temperature and pollutant levels, along with their relationship with other meteorological variables, explains the observed pattern in Rio Grande. This research provides important contributions to the understanding of the interactions between climate change, air pollution, and meteorological factors in similar contexts.
机构:
CSIRO Land & Water, Canberra, ACT, Australia
Australian Res Council Ctr Excellence Climate Sys, Sydney, NSW, AustraliaPrinceton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA
机构:
CSIRO Land & Water, Canberra, ACT, Australia
Australian Res Council Ctr Excellence Climate Sys, Sydney, NSW, AustraliaPrinceton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA