Unmanned Aerial Vehicle-Based Hyperspectral Imaging and Soil Texture Mapping with Robust AI Algorithms

被引:0
作者
Pena, Pablo Flores [1 ,2 ]
Isaac, Mohammad Sadeq Ale [3 ]
Gifu, Daniela [4 ]
Pechlivani, Eleftheria Maria [5 ]
Ragab, Ahmed Refaat [2 ,6 ,7 ]
机构
[1] Univ Carlos III Madrid, Dept Elect Engn, Madrid 28919, Spain
[2] Drone Hopper Co, Madrid 28919, Spain
[3] Univ Politecn Madrid UPM CSIC, Ctr Automat & Robot CAR, Comp Vis & Aerial Robot Grp, Madrid 28006, Spain
[4] Romanian Acad, Inst Comp Sci, Iasi Branch, Codrescu 2, Iasi 700481, Romania
[5] Ctr Res & Technol Hellas, Informat Technol Inst, Thessaloniki 57001, Greece
[6] October 6 Univ, Fac Informat Syst & Comp Sci, Dept Network, Giza 12511, Egypt
[7] Drone Hopper Res Ctr, Calle Mahon 8, Las Rozas De Madrid 28290, Spain
关键词
UAV-based hyperspectral imaging; soil texture mapping; precision agriculture; artificial intelligence (AI) in agriculture; VEGETATION INDEXES; SYSTEMS;
D O I
10.3390/drones9020129
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This paper explores the integration of UAV-based hyperspectral imaging and advanced AI algorithms for soil texture mapping and stress detection in agricultural settings. The primary focus lies on leveraging multi-modal sensor data, including hyperspectral imaging, thermal imaging, and gamma-ray spectroscopy, to enable precise monitoring of abiotic and biotic stressors in crops. An innovative algorithm combining vegetation indices, path planning, and machine learning methods is introduced to enhance the efficiency of data collection and analysis. Experimental results demonstrate significant improvements in accuracy and operational efficiency, paving the way for real-time, data-driven decision-making in precision agriculture.
引用
收藏
页数:17
相关论文
共 39 条
[1]  
Bach H., 2013, Remote Sens, V5, P2438
[2]  
Beamish D., 2009, Proc. Geol. Assoc, V120, P60
[3]   Imaging spectrometry for soil applications [J].
Ben-Dor, E. ;
Taylor, R. G. ;
Hill, J. ;
Dematte, J. A. M. ;
Whiting, M. L. ;
Chabrillat, S. ;
Sommer, S. .
ADVANCES IN AGRONOMY, VOL 97, 2008, 97 :321-+
[4]  
Camps-Valls G., 2020, Remote Sens, V12, P1002
[5]  
Camps-Valls S., 2019, IEEE Geosci. Remote Sens. Mag, V7, P64
[6]  
Chang C., 2022, J. Agric. Eng. Res, V34, P123
[7]   Unmanned aerial systems for photogrammetry and remote sensing: A review [J].
Colomina, I. ;
Molina, P. .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 92 :79-97
[8]   A Review of UAV Path-Planning Algorithms and Obstacle Avoidance Methods for Remote Sensing Applications [J].
Debnath, Dipraj ;
Vanegas, Fernando ;
Sandino, Juan ;
Hawary, Ahmad Faizul ;
Gonzalez, Felipe .
REMOTE SENSING, 2024, 16 (21)
[9]   A NARROW-WAVEBAND SPECTRAL INDEX THAT TRACKS DIURNAL CHANGES IN PHOTOSYNTHETIC EFFICIENCY [J].
GAMON, JA ;
PENUELAS, J ;
FIELD, CB .
REMOTE SENSING OF ENVIRONMENT, 1992, 41 (01) :35-44
[10]  
Green P., 2021, J. Environ. Manag, V285, P1122