A Modification Method for Domain Shift in the Hidden Semi-Markov Model and Its Application

被引:0
作者
Shimada, Yunosuke [1 ]
Kusaka, Takashi [2 ]
Mukaeda, Takayuki [3 ,4 ]
Endo, Yui [2 ,5 ]
Tada, Mitsunori [2 ,5 ]
Miyata, Natsuki [2 ,5 ]
Tanaka, Takayuki [2 ]
机构
[1] Hokkaido Univ, Grad Sch Informat Sci & Technol, Sapporo 0600808, Japan
[2] Hokkaido Univ, Fac Informat Sci & Technol, Sapporo 0600808, Japan
[3] Kanagawa Inst Ind Sci & Technol, Ebina 2430435, Japan
[4] Yokohama Natl Univ, Fac Environm & Informat, Yokohama 2408501, Japan
[5] Natl Inst Adv Ind Sci & Technol, Koto Ku, Tokyo 1350064, Japan
关键词
machine learning; domain shift; hidden semi-Markov model; work recognition; RECOGNITION;
D O I
10.3390/electronics14081579
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In human behavior recognition using machine learning, model performance degrades when the training data and operational data follow different distributions which is a phenomenon known as domain shift. This study proposes a method for domain adaptation in the hidden semi-Markov model (HSMM) by modifying only the emission probability distributions. Assuming that the state transition probabilities remain unchanged, the method updates the emission probabilities based on the posterior distribution of the target domain. This approach enables domain adaptation with minimal computational cost without requiring model retraining. The effectiveness of the proposed method was evaluated on synthetic time-series data from different domains and actual care work data, achieving recognition performance comparable to that of models retrained for each domain. These findings suggest that the proposed method applies to various time-series data analysis tasks requiring domain adaptation.
引用
收藏
页数:16
相关论文
共 30 条
[1]   Gait phase analysis based on a Hidden Markov Model [J].
Bae, Joonbum ;
Tomizuka, Masayoshi .
MECHATRONICS, 2011, 21 (06) :961-970
[2]  
Ganin Y, 2015, PR MACH LEARN RES, V37, P1180
[3]  
Gao X., 2021, P 2021 INT C INF TEC, P123, DOI [10.1109/ICITBE54178.2021.00036, DOI 10.1109/ICITBE54178.2021.00036]
[4]  
Gedat Egbert, 2017, 2017 IEEE 15th International Symposium on Intelligent Systems and Informatics (SISY). Proceedings, P000157, DOI 10.1109/SISY.2017.8080544
[5]   Deep Reconstruction-Classification Networks for Unsupervised Domain Adaptation [J].
Ghifary, Muhammad ;
Kleijn, W. Bastiaan ;
Zhang, Mengjie ;
Balduzzi, David ;
Li, Wen .
COMPUTER VISION - ECCV 2016, PT IV, 2016, 9908 :597-613
[6]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
[7]  
Hoffman J, 2018, PR MACH LEARN RES, V80
[8]  
Joaquin Q.C., 2008, Dataset Shift in Machine Learning
[9]   Contrastive Adaptation Network for Unsupervised Domain Adaptation [J].
Kang, Guoliang ;
Jiang, Lu ;
Yang, Yi ;
Hauptmann, Alexander G. .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :4888-4897
[10]   A Survey on Human Activity Recognition using Wearable Sensors [J].
Lara, Oscar D. ;
Labrador, Miguel A. .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2013, 15 (03) :1192-1209