Computation Rate Maximization in Active RIS-Assisted Hybrid FDMA-NOMA MEC Systems: A Deep Reinforcement Learning Approach

被引:0
作者
Ahn, Joonsuk [1 ]
Mughal, Danish Mehmood [1 ]
Kim, Sang-Hyo [1 ]
Chung, Min Young [1 ]
机构
[1] Sungkyunkwan Univ, Dept Elect & Comp Engn, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
NOMA; Computational modeling; Resource management; Optimization; Array signal processing; Training; Servers; Base stations; Vectors; Signal to noise ratio; Reconfigurable intelligent surface (RIS); mobile edge computing (MEC); deep reinforcement learning (DRL); proximal policy optimization (PPO); RECONFIGURABLE INTELLIGENT SURFACE; OPTIMIZATION;
D O I
10.1109/LWC.2025.3542086
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This letter investigates an active RIS-assisted mobile edge computing system where IoT devices (IDs) offload compute-intensive tasks to a base station under limited energy budget. IDs communicate in pairs leveraging hybrid frequency-division and nonorthogonal multiple-access schemes. To maximize the sum computation rate of IDs, we jointly optimize the energy allocation for offloading and local computing, RIS phase shifts, and receive beamforming. To tackle the non-convex problem, we apply a deep reinforcement learning approach based on the proximal policy optimization algorithm, ensuring stable and efficient training. The simulation results highlight the superiority of the proposed approach when compared to benchmark methods.
引用
收藏
页码:1346 / 1350
页数:5
相关论文
共 15 条
[1]  
Babaeizadeh M, 2017, Arxiv, DOI [arXiv:1611.06256, DOI 10.48550/ARXIV.1611.06256]
[2]   Reconfigurable Intelligent Surface Aided Mobile Edge Computing: From Optimization-Based to Location-Only Learning-Based Solutions [J].
Hu, Xiaoyan ;
Masouros, Christos ;
Wong, Kai-Kit .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (06) :3709-3725
[3]   Spectral Efficiency Optimization for Next Generation NOMA-Enabled IoT Networks [J].
Khan, Wali Ullah ;
Liu, Ju ;
Jameel, Furqan ;
Sharma, Vishal ;
Jantti, Riku ;
Han, Zhu .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (12) :15284-15297
[4]   Latency Minimization for IRS-Aided NOMA MEC Systems With WPT-Enabled IoT Devices [J].
Li, Gen ;
Zeng, Ming ;
Mishra, Deepak ;
Hao, Li ;
Ma, Zheng ;
Dobre, Octavia A. .
IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (14) :12156-12168
[5]   Energy-Efficient Design for IRS-Empowered Uplink MIMO-NOMA Systems [J].
Li, Gen ;
Zeng, Ming ;
Mishra, Deepak ;
Hao, Li ;
Ma, Zheng ;
Dobre, Octavia A. .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (09) :9490-9500
[6]   Improving Computing Capability for Active RIS-Assisted NOMA-MEC Networks [J].
Li, Yizhi ;
Zou, Yulong ;
Hui, Hao ;
Zhu, Jia ;
Ning, Boyu .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (04) :939-943
[7]   Large Intelligent Surface Assisted Wireless Communications With Spatial Modulation and Antenna Selection [J].
Ma, Teng ;
Xiao, Yue ;
Lei, Xia ;
Yang, Ping ;
Lei, Xianfu ;
Dobre, Octavia A. .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2020, 38 (11) :2562-2574
[8]   A Survey on Mobile Edge Computing: The Communication Perspective [J].
Mao, Yuyi ;
You, Changsheng ;
Zhang, Jun ;
Huang, Kaibin ;
Letaief, Khaled B. .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2017, 19 (04) :2322-2358
[9]   6G Internet of Things: A Comprehensive Survey [J].
Nguyen, Dinh C. ;
Ding, Ming ;
Pathirana, Pubudu N. ;
Seneviratne, Aruna ;
Li, Jun ;
Niyato, Dusit ;
Dobre, Octavia ;
Poor, H. Vincent .
IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (01) :359-383
[10]   Hybrid User Pairing for Spectral and Energy Efficiencies in Multiuser MISO-NOMA Networks With SWIPT [J].
Nguyen, Toan-Van ;
Nguyen, Van-Dinh ;
da Costa, Daniel Benevides ;
An, Beongku .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (08) :4874-4890