High-temperature fracture behavior of Ti-22Al-26Nb with different featured microstructures

被引:0
作者
Zhang, Yong-qiang [1 ]
Xue, Ke-min [1 ]
Meng, Miao [1 ]
Yan, Si-liang [1 ]
Li, Ping [1 ]
机构
[1] Hefei Univ Technol, Sch Mat Sci & Engn, Hefei 230009, Peoples R China
基金
中国国家自然科学基金;
关键词
Ti2AlNb-based alloy; featured microstructures; fracture toughness prediction model; fracture mechanics; TITANIUM-ALLOY; NB ALLOYS; TOUGHNESS; PHASE; SIZE; PREDICTION; MECHANISM;
D O I
10.1016/S1003-6326(24)66740-3
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The fracture behavior at high temperatures of the Ti-22Al-26Nb alloy, which features duplex lamellar, bimodal, and Widmanst & auml;tten structures, was studied. Samples of the alloy were prepared through compression deformation in the trans-phase region followed by subsequent heat treatment. The results indicate that at 650 degrees C, the fracture toughness of the Ti-22Al-26Nb alloy is increased by 41.7% compared to that with original microstructures. The content of the B2 phase significantly influences the inherent fracture toughness of the material, while the morphology and distribution of the precipitated phases primarily affect the tortuosity of the crack propagation path. Among the microstructural features, the morphology and geometric orientation of the lamellae most significantly impact the crack path; consequently, the Widmanst & auml;tten structure exhibits the most tortuous fracture path. Additionally, a predictive model for fracture toughness is developed, which effectively predicts the fracture toughness of Ti-22Al-26Nb alloys with various microstructures at 650 degrees C.
引用
收藏
页码:1155 / 1167
页数:13
相关论文
共 32 条
[1]   Crack growth in lamellar titanium aluminide [J].
Arata, JJM ;
Kumar, KS ;
Curtin, WA ;
Needleman, A .
INTERNATIONAL JOURNAL OF FRACTURE, 2001, 111 (02) :163-189
[2]   The intermetallic Ti2AlNb [J].
Banerjee, D .
PROGRESS IN MATERIALS SCIENCE, 1997, 42 (1-4) :135-158
[3]   Part I. The microstructural evolution in Ti-Al-NbO plus Bcc orthorhombic alloys [J].
Boehlert, CJ ;
Majumdar, BS ;
Seetharaman, V ;
Miracle, DB .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1999, 30 (09) :2305-2323
[4]   Microstructure and fracture toughness of a β phase containing TiAl alloy [J].
Chen, Yuyong ;
Niu, Hongzhi ;
Kong, Fantao ;
Xiao, Shulong .
INTERMETALLICS, 2011, 19 (10) :1405-1410
[5]   Characteristics and mechanisms of hydrogen-induced quasi-cleavage fracture of lath martensitic steel [J].
Cho, L. ;
Bradley, P. E. ;
Lauria, D. S. ;
Martin, M. L. ;
Connolly, M. J. ;
Benzing, J. T. ;
Seo, E. J. ;
Findley, K. O. ;
Speer, J. G. ;
Slifka, A. J. .
ACTA MATERIALIA, 2021, 206
[6]   Microstructure, creep, and tensile behavior of a Ti-21Al-29Nb(at.%) orthorhombic+B2 alloy [J].
Cowen, CJ ;
Boehlert, CJ .
INTERMETALLICS, 2006, 14 (04) :412-422
[7]   The interrelationship of fracture toughness and microstructure in a new near β titanium alloy Ti-7Mo-3Nb-3Cr-3Al [J].
Fan, J. K. ;
Li, J. S. ;
Kou, H. C. ;
Hua, K. ;
Tang, B. .
MATERIALS CHARACTERIZATION, 2014, 96 :93-99
[8]   Investigation on the size and distribution effects of O phase on fracture properties of Ti2AlNb superalloy by using image-based crystal plasticity modeling [J].
Fu, Yanqi ;
Lv, Manqian ;
Zhao, Qing ;
Zhang, Haiming ;
Cui, Zhenshan .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 805
[9]   High-temperature titanium alloys [J].
Gogia, AK .
DEFENCE SCIENCE JOURNAL, 2005, 55 (02) :149-173
[10]  
Li SQ, 2002, T NONFERR METAL SOC, V12, P582