Frequency-domain augmentation and multi-scale feature alignment for improving transferability of adversarial examples

被引:0
作者
Li, Gui-Hong
Zhang, Heng-Ru [1 ]
Min, Fan
机构
[1] Southwest Petr Univ, Sch Comp Sci & Software Engn, Chengdu 610500, Peoples R China
基金
中国国家自然科学基金;
关键词
Adversarial attack; Frequency-domain; Multi-scale; Surrogate model; Transferability;
D O I
10.1016/j.comnet.2025.111261
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Transfer-based adversarial attack implies that the same adversarial example can fool Deep Neural Networks (DNNs) with different architectures. Model-related approaches train a new surrogate model in local to generate adversarial examples. However, because DNNs with different architectures focus on diverse features within the same data, adversarial examples generated by surrogate models frequently exhibit poor transferability when the surrogate and target models have significant architectural differences. In this paper, we propose a Two-Stage Generation Framework (TSGF) through frequency-domain augmentation and multi-scale feature alignment to address this issue. In the stage of surrogate model training, we enable the surrogate model to capture various features of data through detail and diversity enhancement. Detail enhancement increases the weight of details in clean examples by a frequency-domain augmentation module. Diversity enhancement incorporates slight adversarial examples into the training process to increase the diversity of clean examples. In the stage of adversarial generation, we perturb the distinctive features that different models focus on to improve transferability by a multi-scale feature alignment attack technique. Specifically, we design a loss function using the intermediate multi-layer features of the surrogate model to maximize the difference between the features of clean and adversarial examples. We compare TSGF with a combination of three closely related surrogate model training schemes and the most relevant adversarial attack methods. Results show that TSGF improves transferability across significantly different architectures. The implementation of TSGF is available at https://github.com/zhanghrswpu/TSGF.
引用
收藏
页数:12
相关论文
共 48 条
[1]   Impact of Dataset Size on Classification Performance: An Empirical Evaluation in the Medical Domain [J].
Althnian, Alhanoof ;
AlSaeed, Duaa ;
Al-Baity, Heyam ;
Samha, Amani ;
Dris, Alanoud Bin ;
Alzakari, Najla ;
Abou Elwafa, Afnan ;
Kurdi, Heba .
APPLIED SCIENCES-BASEL, 2021, 11 (02) :1-18
[2]  
Bai T, 2021, Arxiv, DOI arXiv:2102.01356
[3]  
Bircanoglu Cenk, 2017, Comic books classification dataset
[4]  
Carion N, 2020, Img Proc Comp Vis Re, V12346, P213, DOI 10.1007/978-3-030-58452-8_13
[5]   Emerging Properties in Self-Supervised Vision Transformers [J].
Caron, Mathilde ;
Touvron, Hugo ;
Misra, Ishan ;
Jegou, Herve ;
Mairal, Julien ;
Bojanowski, Piotr ;
Joulin, Armand .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :9630-9640
[6]  
Chen T, 2020, PR MACH LEARN RES, V119
[7]  
Ding ZY, 2020, ADV NEUR IN, V33
[8]   Boosting Adversarial Attacks with Momentum [J].
Dong, Yinpeng ;
Liao, Fangzhou ;
Pang, Tianyu ;
Su, Hang ;
Zhu, Jun ;
Hu, Xiaolin ;
Li, Jianguo .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :9185-9193
[9]  
Dosovitskiy A, 2021, Arxiv, DOI [arXiv:2010.11929, 10.48550/arXiv.2010.11929]
[10]   GhostNet: More Features from Cheap Operations [J].
Han, Kai ;
Wang, Yunhe ;
Tian, Qi ;
Guo, Jianyuan ;
Xu, Chunjing ;
Xu, Chang .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :1577-1586