Platelet Extracellular Vesicles as Natural Delivery Vehicles for Mitochondrial Dysfunction Therapy?

被引:0
作者
Yeh, Hsien Chang [1 ]
Gupta, Kirti [2 ]
Lu, Ya-Hsuan [3 ]
Srinivasan, Abinaya [4 ]
Delila, Liling [5 ]
Yen, Nguyen Tran Hai [5 ]
Nyam-Erdene, Ariunjargal [4 ]
Burnouf, Thierry [4 ,5 ,6 ]
机构
[1] Taipei Med Univ, Coll Med, Sch Med, Taipei 110, Taiwan
[2] Taipei Med Univ, Coll Med, Int Grad Program Med, Taipei 110, Taiwan
[3] Taipei Med Univ, Sch Biomed Engn, New Taipei 110, Taiwan
[4] Taipei Med Univ, Coll Biomed Engn, Int PhD Program Biomed Engn, New Taipei 110, Taiwan
[5] Taipei Med Univ, Grad Inst Biomed Mat & Tissue Engn, Coll Biomed Engn, New Taipei 110, Taiwan
[6] Taipei Med Univ, Coll Med, Int PhD Program Cell Therapy & Regenerat Med, Taipei 110, Taiwan
关键词
extracellular vesicles; platelet; exosomes; microvesicles; oxidative stress; TRAUMATIC BRAIN-INJURY; MICROPARTICLES INDUCE ANGIOGENESIS; PYRUVATE-DEHYDROGENASE KINASES; ELECTRON-TRANSFER REACTIONS; OXIDATIVE STRESS; GROWTH-FACTOR; PHARMACOLOGICAL TARGET; GENERAL-PROPERTIES; ENERGY-METABOLISM; DNA DAMAGE;
D O I
10.1021/acsbiomaterials.5c00473
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Mitochondria are vital for energy production, metabolic regulation, and cellular signaling. Their dysfunction is strongly implicated in neurological, cardiovascular, and muscular degenerative diseases, where energy deficits and oxidative stress accelerate disease progression. Platelet extracellular vesicles (PEVs), once called "platelet dust", have emerged as promising agents for mitigating mitochondrial dysfunction. Like other extracellular vesicles (EVs), PEVs carry diverse molecular cargo and surface markers implicated in disease processes and therapeutic efficacy. Notably, they may possibly contain intact or partially functional mitochondrial components, making them tentatively attractive for targeting mitochondrial damage. Although direct research on PEVs-mediated mitochondrial rescue remains limited, current evidence suggests that PEVs can modulate diseases associated with mitochondrial dysfunction and potentially enhance mitochondrial health. This review explores the therapeutic potential of PEVs in neurodegenerative and cardiovascular disorders, highlighting their role in restoring mitochondrial health. By examining recent advancements in PEVs research, we aim to shed light on novel strategies for utilizing PEVs as therapeutic agents. Our goal is to underscore the importance of further fundamental and applied research into PEVs-based interventions, as innovative tools for combating a wide range of diseases linked to mitochondrial dysfunction.
引用
收藏
页码:2601 / 2621
页数:21
相关论文
共 248 条
[11]   Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration [J].
Arraud, N. ;
Linares, R. ;
Tan, S. ;
Gounou, C. ;
Pasquet, J. -M. ;
Mornet, S. ;
Brisson, A. R. .
JOURNAL OF THROMBOSIS AND HAEMOSTASIS, 2014, 12 (05) :614-627
[12]   The role of mitochondrial dysfunction in Alzheimer's disease pathogenesis [J].
Ashleigh, Theophania ;
Swerdlow, Russell H. ;
Beal, M. Flint .
ALZHEIMERS & DEMENTIA, 2023, 19 (01) :333-342
[13]   Platelet Extracellular Vesicles Loaded Gelatine Hydrogels for Wound Care [J].
Back, Florence ;
Barras, Alexandre ;
Nyam-Erdene, Ariunjargal ;
Yang, Jen-Chang ;
Melinte, Sorin ;
Rumipamba, Jose ;
Burnouf, Thierry ;
Boukherroub, Rabah ;
Szunerits, Sabine ;
Chuang, Er-Yuan .
ADVANCED HEALTHCARE MATERIALS, 2025, 14 (01)
[14]   Platelet-derived extracellular vesicles encapsulate microRNA-34c-5p to ameliorate inflammatory response of coronary artery endothelial cells via PODXL-mediated P38 MAPK signaling pathway [J].
Bai, Xuetao ;
Zhang, Hao ;
Li, Zhiguo ;
Chen, Ou ;
He, Hengpeng ;
Jia, Xiukun ;
Zou, Lijuan .
NUTRITION METABOLISM AND CARDIOVASCULAR DISEASES, 2022, 32 (10) :2424-2438
[15]   Mitochondrial dysfunction - Silent killer in cerebral ischemia [J].
Bakthavachalam, Pramila ;
Shanmugam, Prakash Srinivasan Timiri .
JOURNAL OF THE NEUROLOGICAL SCIENCES, 2017, 375 :417-423
[16]   Hydrogen peroxide- and peroxynitrite-induced mitochondrial DNA damage and dysfunction in vascular endothelial and smooth muscle cells [J].
Ballinger, SW ;
Patterson, C ;
Yan, CN ;
Doan, R ;
Burow, DL ;
Young, CG ;
Yakes, FM ;
Van Houten, B ;
Ballinger, CA ;
Freeman, BA ;
Runge, MS .
CIRCULATION RESEARCH, 2000, 86 (09) :960-966
[17]   The role of mitochondria in rheumatic diseases [J].
Becker, Yann L. C. ;
Duvvuri, Bhargavi ;
Fortin, Paul R. ;
Lood, Christian ;
Boilard, Eric .
NATURE REVIEWS RHEUMATOLOGY, 2022, 18 (11) :621-640
[18]   Identification of Mitofusin 1 and Complement Component 1q Subcomponent Binding Protein as Mitochondrial Targets in Systemic Lupus Erythematosus [J].
Becker, Yann L. C. ;
Gagne, Jean-Philippe ;
Julien, Anne-Sophie ;
Levesque, Tania ;
Allaeys, Isabelle ;
Gougeard, Nadine ;
Rubio, Vicente ;
Boisvert, Francois-Michel ;
Jean, Dominique ;
Wagner, Eric ;
Poirier, Guy G. ;
Fortin, Paul R. ;
Boilard, Eric .
ARTHRITIS & RHEUMATOLOGY, 2022, 74 (07) :1193-1203
[19]   The versatility and universality of calcium signalling [J].
Berridge, MJ ;
Lipp, P ;
Bootman, MD .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2000, 1 (01) :11-21
[20]   Targeting mitochondrial bioenergetics as a promising therapeutic strategy in metabolic and neurodegenerative diseases [J].
Bhatti, Gurjit Kaur ;
Gupta, Anshika ;
Pahwa, Paras ;
Khullar, Naina ;
Singh, Satwinder ;
Navik, Umashanker ;
Kumar, Shashank ;
Mastana, Sarabjit Singh ;
Reddy, Arubala P. ;
Reddy, P. Hemachandra ;
Bhatti, Jasvinder Singh .
BIOMEDICAL JOURNAL, 2022, 45 (05) :733-748