Wood-based composite for efficient cryogenic energy storage and thermoregulation in residential buildings in cold regions

被引:1
作者
Chen, Yang [1 ,2 ]
Zheng, Dingyuan [1 ,2 ]
Lau, Cher Hon [4 ]
Feng, Luqiao [4 ]
Yang, Minghui [1 ,2 ]
Wang, Yuning [1 ,2 ]
Tan, Haiyan [1 ,2 ]
Sun, Ce [1 ,2 ]
Liu, Song [3 ]
Zhang, Yanhua [1 ,2 ]
机构
[1] Northeast Forestry Univ, Key Lab Biobased Mat Sci & Technol, Minist Educ, Harbin 150040, Peoples R China
[2] Northeast Forestry Univ, Engn Res Ctr Adv Wooden Mat, Minist Educ, Harbin 150040, Peoples R China
[3] Northeast Forestry Univ, Coll Chem Chem Engn & Resource Utilizat, Harbin 150040, Peoples R China
[4] Univ Edinburgh, Sch Engn, Robert Stevenson Rd, Edinburgh EH9 3FK, Scotland
基金
中国国家自然科学基金;
关键词
Cryogenic energy storage; Wood; Polylactic acid (PLA); Thermoregulation; Solar-to-thermal conversion; PHASE-CHANGE MATERIALS; PHOTOTHERMAL CONVERSION; CARBON-DIOXIDE; PERFORMANCE; STRATEGIES;
D O I
10.1016/j.conbuildmat.2025.140901
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Maintaining the temperature of residential buildings in cold areas is vital for saving energy and reducing CO2 emissions. To this end, a cryogenic energy-storage wood material (known as PPD) comprising polylactic acid (PLA), lauric acid (LA), capric acid (CA), polyethylene glycol (PEG), nanosized zinc oxide (nano-ZnO), and dehemicellulose Chinese fir (DCF) was synthesized herein. The polymer structure of PLA and porous architecture of wood considerably enhanced the encapsulation efficiency of the prepared energy-storage materials. PPD composites demonstrated an exceptionally high latent heat of 16.29-29.87 J & sdot;g- 1, which resulted in broad temperature regulation ability, ranging from-12.5 degrees C to 38.8 degrees C, and good recyclability for over 200 thermal cycles. Furthermore, PPD realized distinct solar-to-thermal energy conversion with a solar-absorption capacity of 18.5 %-40.8 % throughout the solar spectrum. In particular, the esterification reaction between the -COOH groups in the PLA molecular chain and -OH groups in the cellulose chains securely anchored PCMs within the lumens of the wood cells. This process enhanced the chemical stability of PPD. Life cycle assessment results indicated that the synthesis of PPD had a relatively minor overall environmental impact. Thus, this study introduces a pioneering method that employs wood-derived energy-storage materials as components suitable for portable energy-storage devices, passive cooling systems, and energy-storage devices in cold climates.
引用
收藏
页数:10
相关论文
共 53 条
[1]   Development of polyurethane foam incorporating phase change material for thermal energy storage [J].
Amaral, C. ;
Pinto, S. C. ;
Silva, T. ;
Mohseni, F. ;
Amaral, J. S. ;
Amaral, V. S. ;
Marques, P. A. A. P. ;
Barros-Timmons, A. ;
Vicente, R. .
JOURNAL OF ENERGY STORAGE, 2020, 28
[2]   Preparation and Performance Analysis of Form-Stable Composite Phase Change Materials with Different EG Particle Sizes and Mass Fractions for Thermal Energy Storage [J].
An, Zhoujian ;
Du, Xiaoze ;
Chen, Huafu ;
Shi, Tianlu ;
Zhang, Dong .
ACS OMEGA, 2022, :34436-34448
[3]   Towards improved understanding of PEG-impregnated waterlogged archaeological wood: A model study on recent oak [J].
Bjurhager, Ingela ;
Ljungdahl, Jonas ;
Wallstrom, Lennart ;
Gamstedt, E. Kristofer ;
Berglund, Lars A. .
HOLZFORSCHUNG, 2010, 64 (02) :243-250
[4]   Layered double hydroxide (LDH)-based materials: A mini-review on strategies to improve the performance for photocatalytic water splitting [J].
Boumeriame, Hanane ;
Da Silva, Eliana S. ;
Cherevan, Alexey S. ;
Chafik, Tarik ;
Faria, Joaquim L. ;
Eder, Dominik .
JOURNAL OF ENERGY CHEMISTRY, 2022, 64 :406-431
[5]   Nanostructure in energy conversion [J].
Buller, Saskia ;
Strunk, Jennifer .
JOURNAL OF ENERGY CHEMISTRY, 2016, 25 (02) :171-190
[6]   Scalable Wood Hydrogel Membrane with Nanoscale Channels [J].
Chen, Gegu ;
Li, Tian ;
Chen, Chaoji ;
Kong, Weiqing ;
Jiao, Miaolun ;
Jiang, Bo ;
Xia, Qinqin ;
Liang, Zhiqiang ;
Liu, Yang ;
He, Shuaiming ;
Hu, Liangbing .
ACS NANO, 2021, 15 (07) :11244-11252
[7]   Toward practical photoelectrochemical water splitting and CO2 reduction using earth-abundant materials [J].
Chen, Yubin ;
Liu, Ya ;
Wang, Feng ;
Guan, Xiangjiu ;
Guo, Liejin .
JOURNAL OF ENERGY CHEMISTRY, 2021, 61 (469-488) :469-488
[8]   Techno-economic performances of clean heating solutions to replace raw coal for heating in Northern rural China [J].
Deng, Mengsi ;
Ma, Rongjiang ;
Lu, Fei ;
Nie, Yazhou ;
Li, Pengchao ;
Ding, Xingli ;
Yuan, Yanping ;
Shan, Ming ;
Yang, Xudong .
ENERGY AND BUILDINGS, 2021, 240
[9]   Characterizing regional building energy consumption under joint climatic and socioeconomic impacts [J].
Duan, Haiyan ;
Chen, Siyan ;
Song, Junnian .
ENERGY, 2022, 245
[10]   The ingenious combination of thermal energy storage and temperature visualization of binary fatty acid eutectic/eucalyptus wood fiber skeleton composites [J].
Feng, Nianrong ;
Kang, Zhe ;
Hu, Dongying .
SOLAR ENERGY, 2022, 236 :522-532