Investigation of reentrant localization transition in one-dimensional quasi-periodic lattice with long-range hopping

被引:0
作者
Chang, Pei-Jie [1 ]
Zeng, Qi-Bo [2 ]
Pi, Jinghui [3 ,4 ]
Ruan, Dong [1 ,5 ]
Long, Gui-Lu [1 ,5 ,6 ,7 ]
机构
[1] Tsinghua Univ, Dept Phys, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[2] Capital Normal Univ, Dept Phys, Beijing 100048, Peoples R China
[3] Chinese Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
[4] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China
[5] Tsinghua Univ, Frontier Sci Ctr Quantum Informat, Beijing 100084, Peoples R China
[6] Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
[7] Beijing Natl Res Ctr Informat Sci & Technol, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
lattices; quasi-periodic disorder; reentrant localization; long-range hopping; ANDERSON LOCALIZATION; DIFFUSION; ABSENCE;
D O I
10.1088/1367-2630/add558
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Reentrant localization has recently been observed in systems with quasi-periodic nearest-neighbor hopping, where the interplay between dimerized hopping and staggered disorder is identified as the driving mechanism. However, the robustness of reentrant localization in the presence of long-range hopping remains an open question. In this work, we investigate the phenomenon of reentrant localization in systems incorporating long-range hopping. Our results reveal that long-range hopping induces reentrant localization regardless of whether the disorder is staggered or uniform. We demonstrate that long-range hopping does not inherently disrupt localization; instead, under specific conditions, it facilitates the emergence of reentrant localization. Furthermore, by analyzing critical exponents, we show that the inclusion of long-range hopping modifies the critical behavior, leading to transitions that belong to distinct universality classes.
引用
收藏
页数:15
相关论文
共 76 条
[1]   SCALING THEORY OF LOCALIZATION - ABSENCE OF QUANTUM DIFFUSION IN 2 DIMENSIONS [J].
ABRAHAMS, E ;
ANDERSON, PW ;
LICCIARDELLO, DC ;
RAMAKRISHNAN, TV .
PHYSICAL REVIEW LETTERS, 1979, 42 (10) :673-676
[2]   Periodically driven model with quasiperiodic potential and staggered hopping amplitudes: Engineering of mobility gaps and multifractal states [J].
Aditya, Sreemayee ;
Sengupta, K. ;
Sen, Diptiman .
PHYSICAL REVIEW B, 2023, 107 (03)
[3]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[4]   Anderson localization in disordered multilayered structures composed of plasma layers with modulated sinusoidal densities [J].
Ardakani, Abbas Ghasempour ;
Mahboudi, Zahra ;
Golshani, Mojtaba .
PHYSICS OF PLASMAS, 2023, 30 (07)
[5]   Anderson localization of ultracold atoms [J].
Aspect, Alain ;
Inguscio, Massimo .
PHYSICS TODAY, 2009, 62 (08) :30-35
[6]  
Aubry S., 1980, Annals of the Israel Physical Society, V3, P133
[7]   Realization of a Strongly Interacting Fermi Gas of Dipolar Atoms [J].
Baier, S. ;
Petter, D. ;
Becher, J. H. ;
Patscheider, A. ;
Natale, G. ;
Chomaz, L. ;
Mark, M. J. ;
Ferlaino, F. .
PHYSICAL REVIEW LETTERS, 2018, 121 (09)
[8]   Predicted Mobility Edges in One-Dimensional Incommensurate Optical Lattices: An Exactly Solvable Model of Anderson Localization [J].
Biddle, J. ;
Das Sarma, S. .
PHYSICAL REVIEW LETTERS, 2010, 104 (07)
[9]   Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins [J].
Britton, Joseph W. ;
Sawyer, Brian C. ;
Keith, Adam C. ;
Wang, C. -C. Joseph ;
Freericks, James K. ;
Uys, Hermann ;
Biercuk, Michael J. ;
Bollinger, John J. .
NATURE, 2012, 484 (7395) :489-492
[10]   Emulating weak localization using a solid-state quantum circuit [J].
Chen, Yu ;
Roushan, P. ;
Sank, D. ;
Neill, C. ;
Lucero, Erik ;
Mariantoni, Matteo ;
Barends, R. ;
Chiaro, B. ;
Kelly, J. ;
Megrant, A. ;
Mutus, J. Y. ;
O'Malley, P. J. J. ;
Vainsencher, A. ;
Wenner, J. ;
White, T. C. ;
Yin, Yi ;
Cleland, A. N. ;
Martinis, John M. .
NATURE COMMUNICATIONS, 2014, 5