Transfer learning of multicellular organization via single-cell and spatial transcriptomics

被引:1
作者
Tan, Yecheng [1 ,2 ]
Wang, Ai [3 ]
Wang, Zezhou [1 ,4 ]
Lin, Wei [1 ,5 ,6 ,7 ]
Yan, Yan [3 ]
Nie, Qing [8 ]
Shi, Jifan [1 ,5 ,6 ,7 ]
机构
[1] Fudan Univ, Res Inst Intelligent Complex Syst, Shanghai, Peoples R China
[2] Fudan Univ, Inst Sci & Technol Brain Inspired Intelligence, Shanghai, Peoples R China
[3] Fudan Univ, Zhongshan Hosp, Dept Cardiol, Shanghai, Peoples R China
[4] Fudan Univ, Shanghai Ctr Math Sci, Shanghai, Peoples R China
[5] Fudan Univ, State Key Lab Med Neurobiol, Shanghai, Peoples R China
[6] Fudan Univ, MOE Frontiers Ctr Brain Sci, Shanghai, Peoples R China
[7] Shanghai Artificial Intelligence Lab, Shanghai, Peoples R China
[8] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
基金
中国国家自然科学基金;
关键词
GENE-EXPRESSION; TENASCIN-W; INFERENCE; NETWORKS; ATLAS; SEQ;
D O I
10.1371/journal.pcbi.1012991
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Biological tissues exhibit complex gene expression and multicellular patterns that are valuable to dissect. Single-cell RNA sequencing (scRNA-seq) provides full coverages of genes, but lacks spatial information, whereas spatial transcriptomics (ST) measures spatial locations of individual or group of cells, with more restrictions on gene information. Here we show a transfer learning method named iSORT to decipher spatial organization of cells by integrating scRNA-seq and ST data. iSORT trains a neural network that maps gene expressions to spatial locations. iSORT can find spatial patterns at single-cell scale, identify spatial-organizing genes (SOGs) that drive the patterning, and infer pseudo-growth trajectories using a concept of SpaRNA velocity. Benchmarking on a range of biological systems, such as human cortex, mouse embryo, mouse brain, Drosophila embryo, and human developmental heart, demonstrates iSORT's accuracy and practicality in reconstructing multicellular organization. We further conducted scRNA-seq and ST sequencing from normal and atherosclerotic arteries, and the functional enrichment analysis shows that SOGs found by iSORT are strongly associated with vascular structural anomalies.
引用
收藏
页数:26
相关论文
共 83 条
[1]  
10X Genomics, 2024, VISIUM SPATIAL GENE
[2]   SIRV: spatial inference of RNA velocity at the single-cell resolution [J].
Abdelaal, Tamim ;
Grossouw, Laurens M. ;
Pasterkamp, R. Jeroen ;
Lelieveldt, Boudewijn P. F. ;
Reinders, Marcel J. T. ;
Mahfouz, Ahmed .
NAR GENOMICS AND BIOINFORMATICS, 2024, 6 (03)
[3]   Identifying cell populations with scRNASeq [J].
Andrews, Tallulah S. ;
Hemberg, Martin .
MOLECULAR ASPECTS OF MEDICINE, 2018, 59 :114-122
[4]   A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the Developing Human Heart [J].
Asp, Michaela ;
Giacomello, Stefania ;
Larsson, Ludvig ;
Wu, Chenglin ;
Furth, Daniel ;
Qian, Xiaoyan ;
Wardell, Eva ;
Custodio, Joaquin ;
Reimegard, Johan ;
Salmen, Fredrik ;
Osterholm, Cecilia ;
Stahl, Patrik L. ;
Sundstrom, Erik ;
Akesson, Elisabet ;
Bergmann, Olaf ;
Bienko, Magda ;
Mansson-Broberg, Agneta ;
Nilsson, Mats ;
Sylven, Christer ;
Lundeberg, Joakim .
CELL, 2019, 179 (07) :1647-+
[5]   Generalizing RNA velocity to transient cell states through dynamical modeling [J].
Bergen, Volker ;
Lange, Marius ;
Peidli, Stefan ;
Wolf, F. Alexander ;
Theis, Fabian J. .
NATURE BIOTECHNOLOGY, 2020, 38 (12) :1408-1414
[6]  
Berkeley Drosophila Transcription Network Project, About us
[7]   Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram [J].
Biancalani, Tommaso ;
Scalia, Gabriele ;
Buffoni, Lorenzo ;
Avasthi, Raghav ;
Lu, Ziqing ;
Sanger, Aman ;
Tokcan, Neriman ;
Vanderburg, Charles R. ;
Segerstolpe, Asa ;
Zhang, Meng ;
Avraham-Davidi, Inbal ;
Vickovic, Sanja ;
Nitzan, Mor ;
Ma, Sai ;
Subramanian, Ayshwarya ;
Lipinski, Michal ;
Buenrostro, Jason ;
Brown, Nik Bear ;
Fanelli, Duccio ;
Zhuang, Xiaowei ;
Macosko, Evan Z. ;
Regev, Aviv .
NATURE METHODS, 2021, 18 (11) :1352-+
[8]   The dawn of spatial omics [J].
Bressan, Dario ;
Battistoni, Giorgia ;
Hannon, Gregory J. .
SCIENCE, 2023, 381 (6657) :499-+
[9]   Robust decomposition of cell type mixtures in spatial transcriptomics [J].
Cable, Dylan M. ;
Murray, Evan ;
Zou, Luli S. ;
Goeva, Aleksandrina ;
Macosko, Evan Z. ;
Chen, Fei ;
Irizarry, Rafael A. .
NATURE BIOTECHNOLOGY, 2022, 40 (04) :517-+
[10]   Inferring spatial and signaling relationships between cells from single cell transcriptomic data [J].
Cang, Zixuan ;
Nie, Qing .
NATURE COMMUNICATIONS, 2020, 11 (01)