Global spatio-temporal ERA5 precipitation downscaling to km and sub-hourly scale using generative AI

被引:0
作者
Glawion, Luca [1 ]
Polz, Julius [1 ,2 ]
Kunstmann, Harald [1 ,3 ]
Fersch, Benjamin [1 ]
Chwala, Christian [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Meteorol & Climate Res Atmospher Environm Res, Campus Alpin, Garmisch Partenkirchen, Germany
[2] Karlsruhe Inst Technol, Inst Meteorol & Climate Res Atmospher Trace Gases, Karlsruhe, Germany
[3] Univ Augsburg, Inst Geog, Augsburg, Germany
关键词
RADAR RAINFALL; CLIMATE-CHANGE; RESOLUTION; TIME; SPACE; FORECASTS; IMPACT; PREDICTION; MODEL;
D O I
10.1038/s41612-025-01103-y
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The spatial and temporal distribution of precipitation significantly impacts human lives. While reanalysis datasets provide consistent long-term global precipitation information that allows investigations of rainfall-driven hazards like larger-scale flooding, they lack the resolution to capture the high spatio-temporal variability of precipitation and miss intense local rainfall events. Here, we introduce spateGAN-ERA5, the first deep learning-based spatio-temporal downscaling of precipitation data on a global scale. SpateGAN-ERA5 enhances ERA5 precipitation data from 24 km and 1 h to 2 km and 10 min, delivering high-resolution rainfall fields with realistic spatio-temporal patterns and accurate rain rate distribution, including extremes. Its computational efficiency enables the generation of a large ensemble of solutions, addressing uncertainties inherent to downscaling challenges and supports practical applicability for generating high-resolution precipitation data for arbitrary ERA5 time periods and regions on demand. Trained solely on data from Germany and validated in the US and Australia, considering diverse climates, including tropical rainfall regimes, spateGAN-ERA5 demonstrates strong generalization, indicating robust global applicability. It fulfills critical needs for high-resolution precipitation data in hydrological and meteorological research.
引用
收藏
页数:13
相关论文
共 84 条
[61]   Assessing the spatial and temporal variation in the skill of precipitation forecasts from an NWP model [J].
Roberts, Nigel .
METEOROLOGICAL APPLICATIONS, 2008, 15 (01) :163-169
[62]   Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events [J].
Roberts, Nigel M. ;
Lean, Humphrey W. .
MONTHLY WEATHER REVIEW, 2008, 136 (01) :78-97
[63]   PHYSICAL MODELING AND ANALYSIS OF RAIN AND CLOUDS BY ANISOTROPIC SCALING MULTIPLICATIVE PROCESSES [J].
SCHERTZER, D ;
LOVEJOY, S .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1987, 92 (D8) :9693-9714
[64]  
Seed A., 2022, AURA-Operational Radar Rainfields, P3
[65]   Real-time estimation of rainfall fields using radar rainfall and rain gage data [J].
Seo, DJ .
JOURNAL OF HYDROLOGY, 1998, 208 (1-2) :37-52
[66]   Spatio-Temporal Downscaling of Climate Data Using Convolutional and Error-Predicting Neural Networks [J].
Serifi, Agon ;
Guenther, Tobias ;
Ban, Nikolina .
FRONTIERS IN CLIMATE, 2021, 3
[67]   A survey on Image Data Augmentation for Deep Learning [J].
Shorten, Connor ;
Khoshgoftaar, Taghi M. .
JOURNAL OF BIG DATA, 2019, 6 (01)
[68]   Empirical Mode Decomposition in 2-D space and time: a tool for space-time rainfall analysis and nowcasting [J].
Sinclair, S ;
Pegram, GGS .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2005, 9 (03) :127-137
[69]   MULTI-RADAR MULTI-SENSOR (MRMS) SEVERE WEATHER AND AVIATION PRODUCTS Initial Operating Capabilities [J].
Smith, Travis M. ;
Lakshmanan, Valliappa ;
Stumpf, Gregory J. ;
Ortega, Kiel L. ;
Hondl, Kurt ;
Cooper, Karen ;
Calhoun, Kristin M. ;
Kingfield, Darrel M. ;
Manross, Kevin L. ;
Toomey, Robert ;
Brogden, Jeff .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2016, 97 (09) :1617-+
[70]   Flood estimation using radar and raingauge data [J].
Sun, X ;
Mein, RG ;
Keenan, TD ;
Elliott, JF .
JOURNAL OF HYDROLOGY, 2000, 239 (1-4) :4-18