Global spatio-temporal ERA5 precipitation downscaling to km and sub-hourly scale using generative AI

被引:0
作者
Glawion, Luca [1 ]
Polz, Julius [1 ,2 ]
Kunstmann, Harald [1 ,3 ]
Fersch, Benjamin [1 ]
Chwala, Christian [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Meteorol & Climate Res Atmospher Environm Res, Campus Alpin, Garmisch Partenkirchen, Germany
[2] Karlsruhe Inst Technol, Inst Meteorol & Climate Res Atmospher Trace Gases, Karlsruhe, Germany
[3] Univ Augsburg, Inst Geog, Augsburg, Germany
来源
NPJ CLIMATE AND ATMOSPHERIC SCIENCE | 2025年 / 8卷 / 01期
关键词
RADAR RAINFALL; CLIMATE-CHANGE; RESOLUTION; TIME; SPACE; FORECASTS; IMPACT; PREDICTION; MODEL;
D O I
10.1038/s41612-025-01103-y
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The spatial and temporal distribution of precipitation significantly impacts human lives. While reanalysis datasets provide consistent long-term global precipitation information that allows investigations of rainfall-driven hazards like larger-scale flooding, they lack the resolution to capture the high spatio-temporal variability of precipitation and miss intense local rainfall events. Here, we introduce spateGAN-ERA5, the first deep learning-based spatio-temporal downscaling of precipitation data on a global scale. SpateGAN-ERA5 enhances ERA5 precipitation data from 24 km and 1 h to 2 km and 10 min, delivering high-resolution rainfall fields with realistic spatio-temporal patterns and accurate rain rate distribution, including extremes. Its computational efficiency enables the generation of a large ensemble of solutions, addressing uncertainties inherent to downscaling challenges and supports practical applicability for generating high-resolution precipitation data for arbitrary ERA5 time periods and regions on demand. Trained solely on data from Germany and validated in the US and Australia, considering diverse climates, including tropical rainfall regimes, spateGAN-ERA5 demonstrates strong generalization, indicating robust global applicability. It fulfills critical needs for high-resolution precipitation data in hydrological and meteorological research.
引用
收藏
页数:13
相关论文
共 84 条
[1]   A link between surface air temperature and extreme precipitation over Russia from station and reanalysis data [J].
Aleshina, M. A. ;
Semenov, V. A. ;
Chernokulsky, A., V .
ENVIRONMENTAL RESEARCH LETTERS, 2021, 16 (10)
[2]   Accuracy of CHIRPS Satellite-Rainfall Products over Mainland China [J].
Bai, Lei ;
Shi, Chunxiang ;
Li, Lanhai ;
Yang, Yanfen ;
Wu, Jing .
REMOTE SENSING, 2018, 10 (03)
[3]   Evaluation of daily precipitation analyses in E-OBS (v19.0e) and ERA5 by comparison to regional high-resolution datasets in European regions [J].
Bandhauer, Moritz ;
Isotta, Francesco ;
Lakatos, Monika ;
Lussana, Cristian ;
Baserud, Line ;
Izsak, Beatrix ;
Szentes, Oliver ;
Tveito, Ole Einar ;
Frei, Christoph .
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2022, 42 (02) :727-747
[4]   MSWEP V2 Global 3-Hourly 0.1° Precipitation: Methodology and Quantitative Assessment [J].
Beck, Hylke E. ;
Wood, Eric F. ;
Pan, Ming ;
Fisher, Colby K. ;
Miralles, Diego G. ;
van Dijk, Albert I. J. M. ;
McVicar, Tim R. ;
Adler, Robert F. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2019, 100 (03) :473-502
[5]   The ERA5 global reanalysis: Preliminary extension to 1950 [J].
Bell, Bill ;
Hersbach, Hans ;
Simmons, Adrian ;
Berrisford, Paul ;
Dahlgren, Per ;
Horanyi, Andras ;
Munoz-Sabater, Joaquin ;
Nicolas, Julien ;
Radu, Raluca ;
Schepers, Dinand ;
Soci, Cornel ;
Villaume, Sebastien ;
Bidlot, Jean-Raymond ;
Haimberger, Leo ;
Woollen, Jack ;
Buontempo, Carlo ;
Thepaut, Jean-Noel .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2021, 147 (741) :4186-4227
[6]   A SPACE-TIME STOCHASTIC-MODEL OF RAINFALL FOR SATELLITE REMOTE-SENSING STUDIES [J].
BELL, TL .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1987, 92 (D8) :9631-9643
[7]   The Rise of Data-Driven Weather Forecasting A First Statistical Assessment of Machine Learning–Based Weather Forecasts in an Operational-Like Context [J].
Bouallègue, Zied Ben ;
Clare, Mariana C.A. ;
Magnusson, Linus ;
Gascón, Estibaliz ;
Maier-Gerber, Michael ;
Janoušek, Martin ;
Rodwell, Mark ;
Pinault, Florian ;
Dramsch, Jesper S. ;
Lang, Simon T.K. ;
Raoult, Baudouin ;
Rabier, Florence ;
Chevallier, Matthieu ;
Sandu, Irina ;
Dueben, Peter ;
Chantry, Matthew ;
Pappenberger, Florian .
Bulletin of the American Meteorological Society, 2024, 105 (06)
[8]   Temporal and spatial resolution of rainfall measurements required for urban hydrology [J].
Berne, A ;
Delrieu, G ;
Creutin, JD ;
Obled, C .
JOURNAL OF HYDROLOGY, 2004, 299 (3-4) :166-179
[9]   Evaluating Large-Storm Dominance in High-Resolution GCMs and Observations Across the Western Contiguous United States [J].
Bjarke, Nels R. ;
Livneh, Ben ;
Barsugli, Joseph J. ;
Pendergrass, Angeline G. ;
Small, Eric E. .
EARTHS FUTURE, 2024, 12 (06)
[10]   Evaluation of the RainFARM Statistical Downscaling Technique Applied to IMERG over Global Oceans Using Passive Aquatic Listener In Situ Rain Measurements [J].
Bytheway, Janice l. ;
Thompson, Elizabeth j. ;
Yang, Jie ;
Chen, Haonan .
JOURNAL OF HYDROMETEOROLOGY, 2023, 24 (12) :2351-2367