On the Multi-Bump Solutions to (N, q)-Laplacian Equations with Exponential Critical Growth and Logarithmic Nonlinearity in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^N$$\end{document}On the multi-bump solutions to (N, q)-Laplacian equations...Y. Tong, S. Liang

被引:0
作者
Yuxuan Tong [1 ]
Sihua Liang [1 ]
机构
[1] Changchun Normal University,College of Mathematics
关键词
(;  ; )-Laplacian; Exponential critical growth; Logarithmic nonlinearity; Trudinger-Moser inequality; Variational methods; 35A15; 35J05; 35B09;
D O I
10.1007/s12220-025-02062-9
中图分类号
学科分类号
摘要
In this paper, we are concerned with the existence and multiplicity of multi-bump solutions for the following (N, q)-Laplacian equation -ΔNu-Δqu+(μV(x)+Z(x))(|u|N-2u+|u|q-2u)=h(u)+|u|q-2ulog|u|qinRN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} & -\Delta _N u-\Delta _q u+(\mu \mathcal {V}(x)+\mathcal {Z}(x))(|u|^{N-2}u+|u|^{q-2}u)\\ & \quad =h(u)+|u|^{q-2}u\log |u|^q\quad \text {in}\ \mathbb {R}^N, \end{aligned}$$\end{document}where 2≤N<q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le N<q$$\end{document}, μ∈[1,+∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu \in [1,+\infty )$$\end{document}, Δsu=div(|∇u|s-2∇u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _\mathfrak {s}u=\text {div}(|\nabla u|^{\mathfrak {s}-2}\nabla u)$$\end{document} is the s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {s}$$\end{document}-Laplace operator with s∈{N,q}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {s}\in \{N,q\}$$\end{document}, h is a continuous function with exponential critical growth, V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {V}$$\end{document} is a nonnegative continuous function with the potential well Ω:=int(V-1(0))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega :=\text {int}(\mathcal {V}^{-1}(0))$$\end{document} consisting of k components, and the nonnegative continuous function Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {Z}$$\end{document} verifies some assumptions. With the aid of variational methods, we obtain the existence and multiplicity of multi-bump solutions as μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} is large enough. As far as we know, it is the first time that the existence and multiplicity of multi-bump solutions to the (N, q)-Laplacian equation with exponential critical growth and logarithmic nonlinearity are studied. The most obvious and important feature is that we establish some new technique results to prove our results.
引用
收藏
相关论文
empty
未找到相关数据