Self-similar groupoid actions on k-graphs, and invariance of K-theory for cocycle homotopies

被引:0
作者
Mundey, Alexander [1 ]
Sims, Aidan [1 ]
机构
[1] Univ Wollongong, Sch Math & Appl Stat, Wollongong, NSW 2522, Australia
基金
澳大利亚研究理事会;
关键词
Zappa-Sz & eacute; p product; Twisted C*-algebra; Self-similar action; K-theory; k-graph; C-ASTERISK-ALGEBRAS; CATEGORIES; PRODUCTS;
D O I
10.1007/s43034-025-00440-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish conditions under which an inclusion of finitely aligned left-cancellative small categories induces inclusions of twisted C*-algebras. We also present an example of an inclusion of finitely aligned left-cancellative monoids that does not induce a homomorphism even between (untwisted) Toeplitz algebras. We prove that the twisted C*-algebras of a jointly faithful self-similar action of a countable discrete amenable groupoid on a row-finite k-graph with no sources, with respect to homotopic cocycles, have isomorphic K-theory.
引用
收藏
页数:34
相关论文
共 36 条
[1]  
Afsar Z., J. Operator Theory
[2]  
Anantharaman-Delaroche C., 2000, Amenable Groupoids, P196
[3]  
Bédos E, 2018, THEOR APPL CATEG, V33, P1346
[4]  
Brenken B, 2010, MATH SCAND, V106, P217
[5]   On the Zappa-Szep product [J].
Brin, MG .
COMMUNICATIONS IN ALGEBRA, 2005, 33 (02) :393-424
[6]  
Brownlowe N, 2017, SEMIGROUP FORUM, V94, P500, DOI 10.1007/s00233-016-9775-z
[7]   FACTORIZATION IN GROUP ALGEBRAS [J].
COHEN, PJ .
DUKE MATHEMATICAL JOURNAL, 1959, 26 (02) :199-205
[8]   The structure of crossed products of irrational rotation algebras by finite subgroups of SL2(Z) [J].
Echterhoff, Siegfried ;
Lueck, Wolfgang ;
Phillips, N. Christopher ;
Walters, Samuel .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 639 :173-221
[9]  
Elliott G.A., 1984, Monogr. Stud. Math., V17, P157
[10]   K-THEORY AND HOMOTOPIES OF 2-COCYCLES ON HIGHER-RANK GRAPHS [J].
Gillaspy, Elizabeth .
PACIFIC JOURNAL OF MATHEMATICS, 2015, 278 (02) :407-426