Betti numbers of powers of path ideals of cycles

被引:0
作者
Balanescu, Silviu [1 ]
Cimpoeas, Mircea [1 ,2 ]
Vu, Thanh [3 ]
机构
[1] Natl Univ Sci & Technol Politehn Bucharest, Fac Appl Sci, Bucharest 060042, Romania
[2] Sim Stoilow Inst Math, Res unit 5, Bucharest 014700, Romania
[3] Inst Math, Hanoi 122300, Vietnam
关键词
Betti numbers; Monomial ideal; Path ideal; REGULARITY; RESOLUTIONS;
D O I
10.1007/s10801-025-01436-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Jn,m=(x1 & ctdot;xm,x2 & ctdot;xm+1,& mldr;,xnx1 & ctdot;xm-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{n,m} = (x_1\cdots x_{m},x_2 \cdots x_{m+1},\ldots ,x_{n}x_1\cdots x_{m-1})$$\end{document} be the m-path ideal of a cycle of length n >= 5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 5$$\end{document} over the polynomial ring S=k[x1,& mldr;,xn]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S = \textrm{k}[x_1,\ldots ,x_n]$$\end{document}. We provide formulae for all the Betti numbers of Jn,mt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{n,m}<^>t$$\end{document} for all positive integers t when m=n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m = n-1$$\end{document} or m=n-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m = n-2$$\end{document}.
引用
收藏
页数:31
相关论文
共 29 条
[1]   RESOLUTIONS OF DETERMINANTAL IDEALS - THE SUBMAXIMAL MINORS [J].
AKIN, K ;
BUCHSBAUM, DA ;
WEYMAN, J .
ADVANCES IN MATHEMATICS, 1981, 39 (01) :1-30
[2]   Graded Betti numbers of path ideals of cycles and lines [J].
Alilooee, A. ;
Faridi, S. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (01)
[3]  
Balanescu S., 2025, Rev. Union Mat. Argent., DOI [10.33044/revuma.4641, DOI 10.33044/REVUMA.4641]
[4]  
Balanescu S, 2024, U POLITEH BUCH SER A, V86, P65
[5]   Regularity of Edge Ideals Via Suspension [J].
Banerjee, Arindam ;
Nevo, Eran .
ALGEBRAIC COMBINATORICS, 2023, 6 (06) :1687-1695
[6]   The regularity of powers of edge ideals [J].
Banerjee, Arindam .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 41 (02) :303-321
[7]   Regularity of powers of forests and cycles [J].
Beyarslan, Selvi ;
Ha, Huy Tai ;
Tran Nam Trung .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 42 (04) :1077-1095
[8]   Powers of monomial ideals with characteristic-dependent Betti numbers [J].
Bolognini, Davide ;
Macchia, Antonio ;
Strazzanti, Francesco ;
Welker, Volkmar .
RESEARCH IN THE MATHEMATICAL SCIENCES, 2022, 9 (02)
[9]   M-sequences, graph ideals, and ladder ideals of linear type [J].
Conca, A ;
De Negri, E .
JOURNAL OF ALGEBRA, 1999, 211 (02) :599-624
[10]   Simplicial resolutions of powers of square-free monomial ideals [J].
Cooper, Susan M. ;
El Khoury, Sabine ;
Faridi, Sara ;
Mayes-Tang, Sarah ;
Morey, Susan ;
Sega, Liana M. ;
Spiroff, Sandra .
ALGEBRAIC COMBINATORICS, 2024, 7 (01) :77-107