共 32 条
- [1] PM2.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2.5}$$\end{document} forecasting based on transformer neural network and data embedding Earth Science Informatics, 2023, 16 (3) : 2111 - 2124
- [2] A new hybrid PM2.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2.5}$$\end{document} volatility forecasting model based on EMD and machine learning algorithms Environmental Science and Pollution Research, 2023, 30 (34) : 82878 - 82894
- [3] Robust augmented estimation for hourly PM2.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2.5}$$\end{document} using heteroscedastic spatiotemporal models Stochastic Environmental Research and Risk Assessment, 2024, 38 (4) : 1423 - 1451
- [4] Quantifying influence of weather indices on PM2.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2.5}$$\end{document} based on relation map Stochastic Environmental Research and Risk Assessment, 2014, 28 (6) : 1323 - 1331
- [5] High granular and short term time series forecasting of PM2.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PM}_{2.5}$$\end{document} air pollutant - a comparative review Artificial Intelligence Review, 2022, 55 (2) : 1253 - 1287
- [6] Harnessing deep learning for forecasting fire-burning locations and unveiling PM2.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$PM_{2.5}$$\end{document} emissions Modeling Earth Systems and Environment, 2024, 10 (1) : 927 - 941
- [7] Assessing the accuracy of various statistical models for forecasting PM2.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2.5}$$\end{document}: a case study from diverse regions of Gandhinagar and Ahmedabad Environmental Monitoring and Assessment, 197 (1)
- [8] Forecasting hourly NO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {NO}_{2}}$$\end{document} concentrations by ensembling neural networks and mesoscale models Neural Computing and Applications, 2020, 32 (13) : 9331 - 9342
- [9] LSTM2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{2}$$\end{document}: Multi-Label Ranking for Document Classification Neural Processing Letters, 2018, 47 (1) : 117 - 138
- [10] Forecasting upper atmospheric scalars advection using deep learning: an O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O_3$$\end{document} experiment Machine Learning, 2023, 112 (3) : 765 - 788