THE EXACT LIMITS OF ALL ORDER DERIVATIVES OF THE GLOBAL SMOOTH SOLUTION OF A GENERAL KORTEWEG-DE VRIES-BURGERS EQUATION

被引:0
作者
Zhang, Linghai [1 ]
机构
[1] Lehigh Univ, Dept Math, 17 Mem Dr East, Bethlehem, PA 18015 USA
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2025年
关键词
General Korteweg-de Vries-Burgers equation; global smooth solution; all order derivatives; exact limits; sharp rates; ratios; ASYMPTOTIC-BEHAVIOR; WELL-POSEDNESS; SOBOLEV SPACES; INVISCID LIMIT; DECAY; DISSIPATION;
D O I
10.3934/dcdss.2025054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. We study the Cauchy problem for a general Korteweg-de VriesBurgers equation. Also, we study the Cauchy problem for the corresponding linear equation. We will couple together several classical ideas (the Fourier rem, squeeze theorem, several well known inequalities) and existing results. We will use rigorous mathematical analysis to accomplish the exact limits of all order derivatives of the global smooth solution of the Cauchy problem for the Korteweg-de Vries-Burgers equation.
引用
收藏
页数:50
相关论文
共 38 条
[21]   Global well-posedness and inviscid limit for the Korteweg-de Vries-Burgers equation [J].
Guo, Zihua ;
Wang, Baoxiang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (10) :3864-3901
[22]   Asymptotics for the Korteweg-de Vries-Burgers equation [J].
Hayashi, Nakao ;
Naumkin, Pavel I. .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (05) :1441-1456
[23]  
Karch G., 1997, Annales Polonici Mathematici, V67, P65
[24]  
Molinet L, 2002, INT MATH RES NOTICES, V2002, P1979
[25]   The Cauchy problem for dissipative Korteweg de Vries equations in Sobolev spaces of negative order [J].
Molinet, L ;
Ribaud, F .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2001, 50 (04) :1745-1776
[26]  
Nishihara K., 1998, Differential Integral Equations, V11, P85
[27]  
Otani M, 2005, DIFFER INTEGRAL EQU, V18, P1397
[28]  
Otani M, 2006, OSAKA J MATH, V43, P935
[29]  
SCHONBEK ME, 1995, ANN I H POINCARE-AN, V12, P425
[30]  
SHU JJ, 1987, J PHYS A-MATH GEN, V20, pL49, DOI 10.1088/0305-4470/20/2/002