THE EXACT LIMITS OF ALL ORDER DERIVATIVES OF THE GLOBAL SMOOTH SOLUTION OF A GENERAL KORTEWEG-DE VRIES-BURGERS EQUATION

被引:0
作者
Zhang, Linghai [1 ]
机构
[1] Lehigh Univ, Dept Math, 17 Mem Dr East, Bethlehem, PA 18015 USA
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2025年
关键词
General Korteweg-de Vries-Burgers equation; global smooth solution; all order derivatives; exact limits; sharp rates; ratios; ASYMPTOTIC-BEHAVIOR; WELL-POSEDNESS; SOBOLEV SPACES; INVISCID LIMIT; DECAY; DISSIPATION;
D O I
10.3934/dcdss.2025054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. We study the Cauchy problem for a general Korteweg-de VriesBurgers equation. Also, we study the Cauchy problem for the corresponding linear equation. We will couple together several classical ideas (the Fourier rem, squeeze theorem, several well known inequalities) and existing results. We will use rigorous mathematical analysis to accomplish the exact limits of all order derivatives of the global smooth solution of the Cauchy problem for the Korteweg-de Vries-Burgers equation.
引用
收藏
页数:50
相关论文
共 38 条
[1]   DECAY OF SOLUTIONS OF SOME NONLINEAR-WAVE EQUATIONS [J].
AMICK, CJ ;
BONA, JL ;
SCHONBEK, ME .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 81 (01) :1-49
[2]  
Biler P., 1985, Commentationes Mathematicae Universitatics Carolinae, V26, P177
[3]   DECAY-RATES OF THE SOLUTIONS OF NONLINEAR DISPERSIVE EQUATIONS [J].
BISOGNIN, V ;
MENZALA, GP .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1994, 124 :1231-1246
[4]  
Bona J. L., 1995, Discrete and Continuous Dynamical Systems, V1, P151
[5]  
Bona J. L., 1993, Differential and Integral Equations, V6, P961
[6]   LARGE-TIME ASYMPTOTICS OF THE GENERALIZED BENJAMIN-ONO-BURGERS EQUATION [J].
Bona, Jerry L. ;
Luo, Laihan .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2011, 4 (01) :15-50
[7]   Asymptotic decomposition of nonlinear, dispersive wave equations with dissipation [J].
Bona, JL ;
Luo, L .
PHYSICA D, 2001, 152 :363-383
[8]   HIGHER-ORDER ASYMPTOTICS OF DECAYING SOLUTIONS OF SOME NONLINEAR, DISPERSIVE, DISSIPATIVE WAVE-EQUATIONS [J].
BONA, JL ;
PROMISLOW, KS ;
WAYNE, CE .
NONLINEARITY, 1995, 8 (06) :1179-1206
[9]   Fourier splitting and dissipation of nonlinear dispersive waves [J].
Bona, JL ;
Demengel, F ;
Promislow, K .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 :477-502
[10]   THE GENERALIZED FRACTIONAL KDV EQUATION IN WEIGHTED SOBOLEV SPACES [J].
Cunha, Alysson ;
Riano, Oscar .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2025, 24 (02) :189-227