On (k1A1, k2A2, k3A3)-Edge Colourings in Graphs and Generalized Jacobsthal Numbers

被引:0
作者
Piejko, Krzysztof [1 ]
Trojnar-Spelina, Lucyna [1 ]
机构
[1] Rzeszow Univ Technol, Fac Math & Appl Phys, A Powstancow Warszawy 12, PL-35959 Rzeszow, Poland
关键词
Fibonacci numbers; Jacobsthal numbers; edge-coloured graphs; path; DISTANCE PELL NUMBERS; FIBONACCI;
D O I
10.2478/amsil-2025-0006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce a new kind of generalized Jacobsthal numbers in a distance sense. We give the identities and matrix representations for them and their connections with the Fibonacci and the Pell numbers. We also describe the interpretations of these numbers in terms of some kind of (k1A1, k2A2, k3A3)-edge colouring and quasi colouring.
引用
收藏
页码:331 / 348
页数:18
相关论文
共 20 条
[1]  
Bednarz U., 2013, COMMENT MATH UNIV CA, V53, P35, DOI DOI 10.14708/CM.V53I1.771
[2]  
Bednarz U, 2014, ARS COMBINATORIA, V115, P467
[3]  
Bednarz U, 2013, ARS COMBINATORIA, V111, P345
[4]  
Berge C., 1971, Principles of combinatorics
[5]  
Bród D, 2013, ARS COMBINATORIA, V112, P397
[6]  
Diestel R., 2005, GRAPH THEORY
[7]  
ERCOLANO J, 1979, FIBONACCI QUART, V17, P71
[8]  
Kilic E, 2008, ARS COMBINATORIA, V88, P33
[9]   The generalized order-k Fibonacci-Pell sequence by matrix methods [J].
Kilic, Emrah .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 209 (02) :133-145
[10]   The generalized Binet formula, representation and sums of the generalized order-k Pell numbers [J].
Kilic, Emrah ;
Tasci, Dursun .
TAIWANESE JOURNAL OF MATHEMATICS, 2006, 10 (06) :1661-1670