PINK: physical-informed machine learning for lattice thermal conductivity

被引:0
|
作者
Liu, Yujie [1 ]
Wang, Xiaoying [1 ]
Hao, Yuzhou [1 ]
Li, Xuejie [1 ]
Sun, Jun [1 ]
Lookman, Turab [1 ]
Ding, Xiangdong [1 ]
Gao, Zhibin [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Mech Behav Mat, 28 West Xianning Rd, Xian 710049, Shaanxi, Peoples R China
来源
JOURNAL OF MATERIALS INFORMATICS | 2025年 / 5卷 / 01期
基金
中国国家自然科学基金;
关键词
Physical-informed machine learning; thermoelectrics; lattice thermal conductivity; phonon engineering; THERMOELECTRIC FIGURE; GRAPH NETWORKS; CRYSTALS; APPROXIMATION; TEMPERATURE; MERIT; MGO;
D O I
10.20517/jmi.2024.86
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Lattice thermal conductivity (xL) is crucial for e icient thermal management in electronics and energy conversion technologies. Traditional methods for predicting xL are often computationally expensive, limiting their scalability for large-scale material screening. Empirical models, such as the Slack model, offer faster alternatives but require timeconsuming calculations for key parameters such as sound velocity and the Gr & uuml;neisen parameter. This work presents a high-throughput framework, physical-informed kappa (PINK), which combines the predictive power of crystal graph convolutional neural networks (CGCNNs) with the physical interpretability of the Slack model to predict xL directly from crystallographic information files (CIFs). Unlike previous approaches, PINK enables rapid, batch predictions by extracting material properties such as bulk and shear modulus from CIFs using a well-trained CGCNN model. These properties are then used to compute the necessary parameters for xL calculation through a simplified physical formula. PINK was applied to a dataset of 377,221 stable materials, enabling the e icient identification of promising candidates with ultralow xL values, such as Ag3Te4W and Ag3Te4Ta. The platform, accessible via a user-friendly interface, offers an unprecedented combination of speed, accuracy, and scalability, significantly accelerating material discovery for thermal management and energy conversion applications.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Predicting lattice thermal conductivity via machine learning: a mini review
    Luo, Yufeng
    Li, Mengke
    Yuan, Hongmei
    Liu, Huijun
    Fang, Ying
    NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
  • [2] Lattice Thermal Conductivity: An Accelerated Discovery Guided by Machine Learning
    Jaafreh, Russlan
    Kang, Yoo Seong
    Hamad, Kotiba
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (48) : 57204 - 57213
  • [3] Machine Learning and First-Principle Predictions of Materials with Low Lattice Thermal Conductivity
    Lin, Chia-Min
    Khatri, Abishek
    Yan, Da
    Chen, Cheng-Chien
    MATERIALS, 2024, 17 (21)
  • [4] Machine learning models for the lattice thermal conductivity prediction of inorganic materials
    Chen, Lihua
    Huan Tran
    Batra, Rohit
    Kim, Chiho
    Ramprasad, Rampi
    COMPUTATIONAL MATERIALS SCIENCE, 2019, 170
  • [5] A machine learning methodology to investigate the lattice thermal conductivity of defected PbTe
    Qin, Mi
    Zhang, Xuemei
    Zhu, Jianbo
    Yang, Yuming
    Ti, Zhuoyang
    Shen, Yaoling
    Wang, Xianlong
    Liu, Xiaobing
    Zhang, Yongsheng
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (20) : 10612 - 10627
  • [6] Lattice thermal conductivity of graphene nanostructures
    Saiz-Bretin, M.
    Malyshev, A. V.
    Dominguez-Adame, F.
    Quigley, D.
    Romer, R. A.
    CARBON, 2018, 127 : 64 - 69
  • [7] Accelerated prediction of lattice thermal conductivity of Zirconium and its alloys: A machine learning potential method
    Yang, Fan
    Wang, Di
    Si, Jiaxuan
    Yu, Jianqiao
    Xie, Zhen
    Wu, Xiaoyong
    Wang, Yuexia
    JOURNAL OF NUCLEAR MATERIALS, 2025, 605
  • [8] Predicting lattice thermal conductivity from fundamental material properties using machine learning techniques
    Qin, Guangzhao
    Wei, Yi
    Yu, Linfeng
    Xu, Jinyuan
    Ojih, Joshua
    Rodriguez, Alejandro David
    Wang, Huimin
    Qin, Zhenzhen
    Hu, Ming
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (11) : 5801 - 5810
  • [10] Tuning the lattice thermal conductivity of Janus SnSSe by interlayer twisting: a machine-learning-based study
    Luo, Yufeng
    Cao, Haibin
    Li, Mengke
    Yuan, Hongmei
    Liu, Huijun
    NEW JOURNAL OF PHYSICS, 2024, 26 (04):