Bandwidth Parameterized by Cluster Vertex Deletion Number

被引:0
作者
Gima, Tatsuya [1 ]
Kim, Eun Jung [2 ,3 ,4 ]
Kohler, Noleen [5 ]
Melissinos, Nikolaos [6 ]
Vasilakis, Manolis [7 ]
机构
[1] Hokkaido Univ, Sapporo, Hokkaido, Japan
[2] Korea Adv Inst Sci & Technol, Daejeon, South Korea
[3] CNRS, Paris, France
[4] Inst Basic Sci IBS, Discrete Math Grp, Daejeon, South Korea
[5] Univ Leeds, Leeds, England
[6] Czech Tech Univ, Fac Informat Technol, Dept Theoret Comp Sci, Prague, Czech Republic
[7] PSL Univ, Univ Paris Dauphine, CNRS, LAMSADE,UMR7243, Paris, France
关键词
Bandwidth; Clique number; Cluster vertex deletion number; Parameterized complexity; DYNAMIC-PROGRAMMING ALGORITHMS; STRUCTURAL PARAMETERIZATIONS; MINIMIZATION PROBLEM; FIXED NUMBER; APPROXIMATION; CATERPILLARS; GRAPHS; COVER;
D O I
10.1007/s00453-025-01315-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Given a graph G and an integer b, Bandwidth asks whether there exists a bijection pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} from V(G) to {1,& mldr;,|V(G)|}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1, \ldots , |V(G)|\}$$\end{document} such that max{u,v}is an element of E(G)|pi(u)-pi(v)|<= b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max _{\{u, v \} \in E(G)} | \pi (u) - \pi (v) | \le b$$\end{document}. This is a classical NP-complete problem, known to remain NP-complete even on very restricted classes of graphs, such as trees of maximum degree 3 and caterpillars of hair length 3. In the realm of parameterized complexity, these results imply that the problem remains NP-hard on graphs of bounded pathwidth, while it is additionally known to be W[1]-hard when parameterized by the tree-depth of the input graph. In contrast, the problem does become FPT when parameterized by the vertex cover number. In this paper we make progress in understanding the parameterized (in)tractability of Bandwidth. We first show that it is FPT when parameterized by the cluster vertex deletion number cvd plus the clique number omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}, thus significantly strengthening the previously mentioned result for vertex cover number. On the other hand, we show that Bandwidth is W[1]-hard when parameterized only by cvd. Our results develop and generalize some of the methods of argumentation of the previous results and narrow some of the complexity gaps.
引用
收藏
页数:32
相关论文
共 51 条
  • [31] Gima T., 2023, LIPICS, DOI 10.4230
  • [32] Exploring the gap between treedepth and vertex cover through vertex integrity
    Gima, Tatsuya
    Hanaka, Tesshu
    Kiyomi, Masashi
    Kobayashi, Yasuaki
    Otachi, Yota
    [J]. THEORETICAL COMPUTER SCIENCE, 2022, 918 : 60 - 76
  • [33] Improved bandwidth approximation for trees and chordal graphs
    Gupta, A
    [J]. JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2001, 40 (01): : 24 - 36
  • [34] IMPROVED DYNAMIC-PROGRAMMING ALGORITHMS FOR BANDWIDTH MINIMIZATION AND THE MINCUT LINEAR ARRANGEMENT PROBLEM
    GURARI, EM
    SUDBOROUGH, IH
    [J]. JOURNAL OF ALGORITHMS, 1984, 5 (04) : 531 - 546
  • [35] OPTIMAL ASSIGNMENTS OF NUMBERS TO VERTICES
    HARPER, LH
    [J]. JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1964, 12 (01): : 131 - 135
  • [36] Fixed-Parameter Algorithms for Cluster Vertex Deletion
    Hueffner, Falk
    Komusiewicz, Christian
    Moser, Hannes
    Niedermeier, Rolf
    [J]. THEORY OF COMPUTING SYSTEMS, 2010, 47 (01) : 196 - 217
  • [37] Bin packing with fixed number of bins revisited
    Jansen, Klaus
    Kratsch, Stefan
    Marx, Daniel
    Schlotter, Ildiko
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2013, 79 (01) : 39 - 49
  • [38] MINKOWSKI CONVEX BODY THEOREM AND INTEGER PROGRAMMING
    KANNAN, R
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 1987, 12 (03) : 415 - 440
  • [39] Parameterized Algorithms for Graph Burning Problem
    Kare, Anjeneya Swami
    Reddy, I. Vinod
    [J]. COMBINATORIAL ALGORITHMS, IWOCA 2019, 2019, 11638 : 304 - 314
  • [40] Minimum Eccentricity Shortest Path Problem with Respect to Structural Parameters
    Kucera, Martin
    Suchy, Ondrej
    [J]. ALGORITHMICA, 2023, 85 (03) : 762 - 782