Bandwidth Parameterized by Cluster Vertex Deletion Number

被引:0
作者
Gima, Tatsuya [1 ]
Kim, Eun Jung [2 ,3 ,4 ]
Kohler, Noleen [5 ]
Melissinos, Nikolaos [6 ]
Vasilakis, Manolis [7 ]
机构
[1] Hokkaido Univ, Sapporo, Hokkaido, Japan
[2] Korea Adv Inst Sci & Technol, Daejeon, South Korea
[3] CNRS, Paris, France
[4] Inst Basic Sci IBS, Discrete Math Grp, Daejeon, South Korea
[5] Univ Leeds, Leeds, England
[6] Czech Tech Univ, Fac Informat Technol, Dept Theoret Comp Sci, Prague, Czech Republic
[7] PSL Univ, Univ Paris Dauphine, CNRS, LAMSADE,UMR7243, Paris, France
关键词
Bandwidth; Clique number; Cluster vertex deletion number; Parameterized complexity; DYNAMIC-PROGRAMMING ALGORITHMS; STRUCTURAL PARAMETERIZATIONS; MINIMIZATION PROBLEM; FIXED NUMBER; APPROXIMATION; CATERPILLARS; GRAPHS; COVER;
D O I
10.1007/s00453-025-01315-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Given a graph G and an integer b, Bandwidth asks whether there exists a bijection pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} from V(G) to {1,& mldr;,|V(G)|}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1, \ldots , |V(G)|\}$$\end{document} such that max{u,v}is an element of E(G)|pi(u)-pi(v)|<= b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max _{\{u, v \} \in E(G)} | \pi (u) - \pi (v) | \le b$$\end{document}. This is a classical NP-complete problem, known to remain NP-complete even on very restricted classes of graphs, such as trees of maximum degree 3 and caterpillars of hair length 3. In the realm of parameterized complexity, these results imply that the problem remains NP-hard on graphs of bounded pathwidth, while it is additionally known to be W[1]-hard when parameterized by the tree-depth of the input graph. In contrast, the problem does become FPT when parameterized by the vertex cover number. In this paper we make progress in understanding the parameterized (in)tractability of Bandwidth. We first show that it is FPT when parameterized by the cluster vertex deletion number cvd plus the clique number omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}, thus significantly strengthening the previously mentioned result for vertex cover number. On the other hand, we show that Bandwidth is W[1]-hard when parameterized only by cvd. Our results develop and generalize some of the methods of argumentation of the previous results and narrow some of the complexity gaps.
引用
收藏
页数:32
相关论文
共 51 条
  • [11] On Cutwidth Parameterized by Vertex Cover
    Cygan, Marek
    Lokshtanov, Daniel
    Pilipczuk, Marcin
    Pilipczuk, Michal
    Saurabh, Saket
    [J]. ALGORITHMICA, 2014, 68 (04) : 940 - 953
  • [12] Even Faster Exact Bandwidth
    Cygan, Marek
    Pilipczuk, Marcin
    [J]. ACM TRANSACTIONS ON ALGORITHMS, 2012, 8 (01)
  • [13] Bandwidth and distortion revisited
    Cygan, Marek
    Pilipczuk, Marcin
    [J]. DISCRETE APPLIED MATHEMATICS, 2012, 160 (4-5) : 494 - 504
  • [14] Exact and approximate bandwidth
    Cygan, Marek
    Pilipczuk, Marcin
    [J]. THEORETICAL COMPUTER SCIENCE, 2010, 411 (40-42) : 3701 - 3713
  • [15] A survey of graph layout problems
    Díaz, J
    Petit, J
    Serna, M
    [J]. ACM COMPUTING SURVEYS, 2002, 34 (03) : 313 - 356
  • [16] Diestel R, 2018, Graduate Texts in Mathematics, V173, DOI [10.1007/978-3-662-53622-3, DOI 10.1007/978-3-662-53622-3]
  • [17] Doucha M, 2012, LECT NOTES COMPUT SC, V7464, P348, DOI 10.1007/978-3-642-32589-2_32
  • [18] Dregi MS, 2014, LECT NOTES COMPUT SC, V8572, P405
  • [19] Hardness results for approximating the bandwidth
    Dubey, Chandan
    Feige, Uriel
    Unger, Walter
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2011, 77 (01) : 62 - 90
  • [20] Approximating the Bandwidth of Caterpillars
    Feige, Uriel
    Talwar, Kunal
    [J]. ALGORITHMICA, 2009, 55 (01) : 190 - 204