Bandwidth Parameterized by Cluster Vertex Deletion Number

被引:0
作者
Gima, Tatsuya [1 ]
Kim, Eun Jung [2 ,3 ,4 ]
Kohler, Noleen [5 ]
Melissinos, Nikolaos [6 ]
Vasilakis, Manolis [7 ]
机构
[1] Hokkaido Univ, Sapporo, Hokkaido, Japan
[2] Korea Adv Inst Sci & Technol, Daejeon, South Korea
[3] CNRS, Paris, France
[4] Inst Basic Sci IBS, Discrete Math Grp, Daejeon, South Korea
[5] Univ Leeds, Leeds, England
[6] Czech Tech Univ, Fac Informat Technol, Dept Theoret Comp Sci, Prague, Czech Republic
[7] PSL Univ, Univ Paris Dauphine, CNRS, LAMSADE,UMR7243, Paris, France
关键词
Bandwidth; Clique number; Cluster vertex deletion number; Parameterized complexity; DYNAMIC-PROGRAMMING ALGORITHMS; STRUCTURAL PARAMETERIZATIONS; MINIMIZATION PROBLEM; FIXED NUMBER; APPROXIMATION; CATERPILLARS; GRAPHS; COVER;
D O I
10.1007/s00453-025-01315-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Given a graph G and an integer b, Bandwidth asks whether there exists a bijection pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} from V(G) to {1,& mldr;,|V(G)|}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1, \ldots , |V(G)|\}$$\end{document} such that max{u,v}is an element of E(G)|pi(u)-pi(v)|<= b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max _{\{u, v \} \in E(G)} | \pi (u) - \pi (v) | \le b$$\end{document}. This is a classical NP-complete problem, known to remain NP-complete even on very restricted classes of graphs, such as trees of maximum degree 3 and caterpillars of hair length 3. In the realm of parameterized complexity, these results imply that the problem remains NP-hard on graphs of bounded pathwidth, while it is additionally known to be W[1]-hard when parameterized by the tree-depth of the input graph. In contrast, the problem does become FPT when parameterized by the vertex cover number. In this paper we make progress in understanding the parameterized (in)tractability of Bandwidth. We first show that it is FPT when parameterized by the cluster vertex deletion number cvd plus the clique number omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}, thus significantly strengthening the previously mentioned result for vertex cover number. On the other hand, we show that Bandwidth is W[1]-hard when parameterized only by cvd. Our results develop and generalize some of the methods of argumentation of the previous results and narrow some of the complexity gaps.
引用
收藏
页数:32
相关论文
共 51 条
  • [1] Bakken O.R., 2018, Arrangement Problems Parameterized by Neighbourhood Diversity
  • [2] Banik Aritra, 2023, Algorithms and Data Structures: 18th International Symposium, WADS 2023, Proceedings. Lecture Notes in Computer Science (14079), P106, DOI 10.1007/978-3-031-38906-1_8
  • [3] Parameterized problems complete for nondeterministic FPT time and logarithmic space ☆
    Bodlaender, Hans L.
    Groenland, Carla
    Nederlof, Jesper
    Swennenhuis, Celine
    [J]. INFORMATION AND COMPUTATION, 2024, 300
  • [4] Bodlaender HL, 2021, TH CO SC GE ISS, V12911, P15, DOI 10.1007/978-3-030-86838-3_2
  • [5] A Fast Branching Algorithm for Cluster Vertex Deletion
    Boral, Anudhyan
    Cygan, Marek
    Kociumaka, Tomasz
    Pilipczuk, Marcin
    [J]. THEORY OF COMPUTING SYSTEMS, 2016, 58 (02) : 357 - 376
  • [6] Structural Parameterizations for Boxicity
    Bruhn, Henning
    Chopin, Morgan
    Joos, Felix
    Schaudt, Oliver
    [J]. ALGORITHMICA, 2016, 74 (04) : 1453 - 1472
  • [7] THE BANDWIDTH PROBLEM FOR GRAPHS AND MATRICES - A SURVEY
    CHINN, PZ
    CHVATALOVA, J
    DEWDNEY, AK
    GIBBS, NE
    [J]. JOURNAL OF GRAPH THEORY, 1982, 6 (03) : 223 - 254
  • [8] The firefighter problem: Further steps in understanding its complexity
    Chlebikova, Janka
    Chopin, Morgan
    [J]. THEORETICAL COMPUTER SCIENCE, 2017, 676 : 42 - 51
  • [9] Constant Thresholds Can Make Target Set Selection Tractable
    Chopin, Morgan
    Nichterlein, Andre
    Niedermeier, Rolf
    Weller, Mathias
    [J]. THEORY OF COMPUTING SYSTEMS, 2014, 55 (01) : 61 - 83
  • [10] Cygan M., 2015, Parameterized Algorithms, DOI DOI 10.1007/978-3-319-21275-3