Relaxed Inertial Subgradient Extragradient Algorithm for Solving Equilibrium Problems

被引:0
作者
Nwakpa, Chidi Elijah [1 ]
Ofem, Austine Efut [2 ]
Izuchukwu, Chinedu [1 ]
Okeke, Chibueze Christian [1 ]
机构
[1] Univ Witwatersrand, Sch Math, Private Bag 3, ZA-2050 Johannesburg, South Africa
[2] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Durban, South Africa
关键词
Equilibrium problems; Hilbert space; Self-adaptive stepsize; Relaxed inertial factors; Pseudomonotone; Bifunction; Linear convergence rate; Variational inequality problem; Fixed point problem; CONVERGENCE; POINTS; SCHEME;
D O I
10.1007/s00186-025-00894-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose a relaxed inertial subgradient extragradient algorithm for solving equilibrium problems in a real Hilbert space. Under the assumption that the associated bivariate function is pseudomonotone and satisfies the Lipschitzness, we establish that the generated sequence of our proposed algorithm converges weakly to the equilibria set of the equilibrium problem. Furthermore, we obtain a linear convergence rate under the assumption that the bifunction is strongly pseudomonotone. We apply our proposed algorithm to variational inequality and fixed point problems. Finally, we compare our method with other schemes in the literature and the improvement brought by our proposed method is evident in the numerical experiments considered in this paper.
引用
收藏
页码:331 / 371
页数:41
相关论文
共 43 条
[11]   Halpern subgradient extragradient method extended to equilibrium problems [J].
Dang Van Hieu .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2017, 111 (03) :823-840
[12]   The extragradient algorithm with inertial effects for solving the variational inequality [J].
Dong, Qiao-Li ;
Lu, Yan-Yan ;
Yang, Jinfeng .
OPTIMIZATION, 2016, 65 (12) :2217-2226
[13]  
Facchinei F., 2003, Finite-Dimensional Variational Inequalities and Complementarity Problems
[14]  
Fichera G, ATTI ACCAD NAZ LIN, V7, P91
[15]  
Fichera G., 1963, Atti Della Accad. Naz. Dei Lincei, Cl. di Sci. Fis. Mat. E Nat., V34, P138
[16]  
Flam SD, 1997, MATH PROGRAM, V78, P29
[17]   A generic online acceleration scheme for optimization algorithms via relaxation and inertia [J].
Iutzeler, F. ;
Hendrickx, J. M. .
OPTIMIZATION METHODS & SOFTWARE, 2019, 34 (02) :383-405
[18]   Relaxed inertial methods for solving the split monotone variational inclusion problem beyond co-coerciveness [J].
Izuchukwu, Chinedu ;
Reich, Simeon ;
Shehu, Yekini .
OPTIMIZATION, 2023, 72 (02) :607-646
[19]  
Konnov I, 2007, Jour
[20]  
Mordukhovich B. S., 2013, Synthesis Lectures on Mathematics and Statistics, V6, P1