Relaxed Inertial Subgradient Extragradient Algorithm for Solving Equilibrium Problems

被引:0
作者
Nwakpa, Chidi Elijah [1 ]
Ofem, Austine Efut [2 ]
Izuchukwu, Chinedu [1 ]
Okeke, Chibueze Christian [1 ]
机构
[1] Univ Witwatersrand, Sch Math, Private Bag 3, ZA-2050 Johannesburg, South Africa
[2] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Durban, South Africa
关键词
Equilibrium problems; Hilbert space; Self-adaptive stepsize; Relaxed inertial factors; Pseudomonotone; Bifunction; Linear convergence rate; Variational inequality problem; Fixed point problem; CONVERGENCE; POINTS; SCHEME;
D O I
10.1007/s00186-025-00894-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose a relaxed inertial subgradient extragradient algorithm for solving equilibrium problems in a real Hilbert space. Under the assumption that the associated bivariate function is pseudomonotone and satisfies the Lipschitzness, we establish that the generated sequence of our proposed algorithm converges weakly to the equilibria set of the equilibrium problem. Furthermore, we obtain a linear convergence rate under the assumption that the bifunction is strongly pseudomonotone. We apply our proposed algorithm to variational inequality and fixed point problems. Finally, we compare our method with other schemes in the literature and the improvement brought by our proposed method is evident in the numerical experiments considered in this paper.
引用
收藏
页码:331 / 371
页数:41
相关论文
共 43 条
[1]   An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping [J].
Alvarez, F ;
Attouch, H .
SET-VALUED ANALYSIS, 2001, 9 (1-2) :3-11
[2]   Convergence of a relaxed inertial proximal algorithm for maximally monotone operators [J].
Attouch, Hedy ;
Cabot, Alexandre .
MATHEMATICAL PROGRAMMING, 2020, 184 (1-2) :243-287
[3]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[4]  
Blum E., 1994, Math. Stud., V63, P123
[5]   CONSTRUCTION OF FIXED POINTS OF NONLINEAR MAPPINGS IN HILBERT SPACE [J].
BROWDER, FE ;
PETRYSHY.WV .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1967, 20 (02) :197-&
[6]   Strong convergence of a modified extragradient algorithm to solve pseudomonotone equilibrium and application to classification of diabetes mellitus [J].
Cholamjiak, Watcharaporn ;
Suparatulatorn, Raweerote .
CHAOS SOLITONS & FRACTALS, 2023, 168
[7]  
Chu Z., 2024, OPTIM ERUD, V1, P45, DOI [10.69829/oper-024-0101-ta04, DOI 10.69829/OPER-024-0101-TA04]
[8]   The subgradient extragradient method for pseudomonotone equilibrium problems [J].
Dadashi, Vahid ;
Iyiola, Olaniyi S. ;
Shehu, Yekini .
OPTIMIZATION, 2020, 69 (04) :901-923
[9]   New inertial algorithm for a class of equilibrium problems [J].
Dang Van Hieu .
NUMERICAL ALGORITHMS, 2019, 80 (04) :1413-1436
[10]   Modified extragradient algorithms for solving equilibrium problems [J].
Dang Van Hieu ;
Cho, Yeol Je ;
Xiao, Yi-bin .
OPTIMIZATION, 2018, 67 (11) :2003-2029