Bounds and Constructions of Quantum Locally Recoverable Codes From Quantum CSS Codes

被引:1
作者
Luo, Gaojun [1 ,2 ]
Chen, Bocong [3 ]
Ezerman, Martianus Frederic [2 ,4 ]
Ling, San [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Sch Math, Nanjing 211106, Jiangsu, Peoples R China
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore 637371, Singapore
[3] South China Univ Technol, Sch Future Technol, Guangzhou 510641, Peoples R China
[4] PQStn, Singapore 408564, Singapore
基金
中国国家自然科学基金;
关键词
Codes; Linear codes; Systematics; Symbols; Parity check codes; Memory; Hamming weight; Finite element analysis; Codecs; Vectors; CSS code; locally recoverable code; quantum code;
D O I
10.1109/TIT.2025.3533494
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Classical locally recoverable codes (LRCs) have become indispensable in distributed storage systems. They provide efficient recovery in terms of localized errors. Quantum LRCs have very recently been introduced for their potential application in quantum data storage. In this paper, we use classical LRCs to investigate quantum LRCs. We prove that the parameters of quantum LRCs are bounded by their classical counterparts. We deduce bounds on the parameters of quantum LRCs from bounds on the parameters of the classical ones. We establish a characterization of optimal pure quantum LRCs based on classical codes with specific properties. Using well-crafted classical LRCs as ingredients in the construction of quantum CSS codes, we offer the first construction of several families of optimal pure quantum LRCs.
引用
收藏
页码:1794 / 1802
页数:9
相关论文
共 24 条
  • [11] Bounds and Constructions of Locally Repairable Codes: Parity-Check Matrix Approach
    Hao, Jie
    Xia, Shu-Tao
    Shum, Kenneth W.
    Chen, Bin
    Fu, Fang-Wei
    Yang, Yixian
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (12) : 7465 - 7474
  • [12] Huffman WC., 2003, FUNDAMENTALS ERROR C, DOI 10.1017/CBO9780511807077
  • [13] Explicit Construction of Optimal Locally Recoverable Codes of Distance 5 and 6 via Binary Constant Weight Codes
    Jin, Lingfei
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (08) : 4658 - 4663
  • [14] Nonbinary stabilizer codes over finite fields
    Ketkar, Avanti
    Klappenecker, Andreas
    Kumar, Santosh
    Sarvepalli, Pradeep Kiran
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (11) : 4892 - 4914
  • [15] Ling S., 2004, Coding Theory: A First Course
  • [16] Optimal Locally Repairable Codes of Distance 3 and 4 via Cyclic Codes
    Luo, Yuan
    Xing, Chaoping
    Yuan, Chen
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (02) : 1048 - 1053
  • [17] Prakash N., 2012, Proceedings of the 2012 IEEE International Symposium on Information Theory - ISIT, P2776, DOI 10.1109/ISIT.2012.6284028
  • [18] New Optimal Cyclic Locally Recoverable Codes of Length n=2(q+1)
    Qian, Jianfa
    Zhang, Lina
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (01) : 233 - 239
  • [19] Schipani D, 2011, IEEE INT SYMP INFO, P835, DOI 10.1109/ISIT.2011.6034253
  • [20] Bounds on the Parameters of Locally Recoverable Codes
    Tamo, Itzhak
    Barg, Alexander
    Frolov, Alexey
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (06) : 3070 - 3083