Bounds and Constructions of Quantum Locally Recoverable Codes From Quantum CSS Codes

被引:1
作者
Luo, Gaojun [1 ,2 ]
Chen, Bocong [3 ]
Ezerman, Martianus Frederic [2 ,4 ]
Ling, San [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Sch Math, Nanjing 211106, Jiangsu, Peoples R China
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore 637371, Singapore
[3] South China Univ Technol, Sch Future Technol, Guangzhou 510641, Peoples R China
[4] PQStn, Singapore 408564, Singapore
基金
中国国家自然科学基金;
关键词
Codes; Linear codes; Systematics; Symbols; Parity check codes; Memory; Hamming weight; Finite element analysis; Codecs; Vectors; CSS code; locally recoverable code; quantum code;
D O I
10.1109/TIT.2025.3533494
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Classical locally recoverable codes (LRCs) have become indispensable in distributed storage systems. They provide efficient recovery in terms of localized errors. Quantum LRCs have very recently been introduced for their potential application in quantum data storage. In this paper, we use classical LRCs to investigate quantum LRCs. We prove that the parameters of quantum LRCs are bounded by their classical counterparts. We deduce bounds on the parameters of quantum LRCs from bounds on the parameters of the classical ones. We establish a characterization of optimal pure quantum LRCs based on classical codes with specific properties. Using well-crafted classical LRCs as ingredients in the construction of quantum CSS codes, we offer the first construction of several families of optimal pure quantum LRCs.
引用
收藏
页码:1794 / 1802
页数:9
相关论文
共 24 条
  • [1] [Anonymous], 1959, Chiffres
  • [2] Bose R.C., 1960, Inf. Control, V3, P68, DOI [10.1016/S0019-9958(60)90287-4, DOI 10.1016/S0019-9958(60)90287-4.23, DOI 10.1016/S0019-9958(60)90287-4]
  • [3] Bounds on the Size of Locally Recoverable Codes
    Cadambe, Viveck R.
    Mazumdar, Arya
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (11) : 5787 - 5794
  • [4] Quantum error correction via codes over GF (4)
    Calderbank, AR
    Rains, EM
    Shor, PW
    Sloane, NJA
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (04) : 1369 - 1387
  • [5] Constructions of Optimal Cyclic (r, δ) Locally Repairable Codes
    Chen, Bin
    Xia, Shu-Tao
    Hao, Jie
    Fu, Fang-Wei
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (04) : 2499 - 2511
  • [6] A Construction of Optimal (r, δ)-Locally Recoverable Codes
    Chen, Bocong
    Huang, Jing
    [J]. IEEE ACCESS, 2019, 7 : 180349 - 180353
  • [7] SUBFIELD SUBCODES OF MODIFIED REED-SOLOMON CODES
    DELSARTE, P
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1975, 21 (05) : 575 - 576
  • [8] Golowich L., 2025, P ANN ACM SIAM S DIS, P5512, DOI [10.1137/1.9781611978322.188, DOI 10.1137/1.9781611978322.188]
  • [9] On the Locality of Codeword Symbols
    Gopalan, Parikshit
    Huang, Cheng
    Simitci, Huseyin
    Yekhanin, Sergey
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (11) : 6925 - 6934
  • [10] Gottesman D., 1997, Stabilizer codes and quantum error correction