Machine learning in ovarian cancer: a bibliometric and visual analysis from 2004 to 2024

被引:0
作者
Zeng, Xian [1 ]
Li, Zude [2 ]
Dai, Lilin [1 ]
Li, Jiang [1 ,2 ]
Liao, Luqin [1 ]
Chen, Wei [1 ]
机构
[1] Guilin Med Univ, Affiliated Hosp, Dept Pharm, Guilin, Peoples R China
[2] Guilin Univ Technol, Fac Publ Adm, Guilin, Peoples R China
关键词
Machine learning; Deep learning; Ovarian cancer; Bibliometrics; Artificial intelligence; ARTIFICIAL-INTELLIGENCE; DIAGNOSIS; INTEGRATION; IMAGES; RISK;
D O I
10.1007/s12672-025-02416-3
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
ObjectiveOvarian cancer (OC) is a common malignant tumor in women, with poor prognosis and high mortality rates. Early diagnosis, screening, and prognostic prediction of OC have long been focal points and challenges in this field. In recent years, machine learning (ML) has gradually demonstrated its unique advantages in the early diagnosis, screening, and prognostic prediction of tumors, including OC.This study aims to analyze global development trends and research hotspots in the application of ML for OC, thereby providing a reference for future research directions.MethodsWe searched the Web of Science Core Collection (WoSCC) for all publications related to OC and ML from 2004 to 2024, conducting a quantitative analysis using VOSviewer, R software, and CiteSpace.ResultsA total of 777 articles were retrieved.The number of publications related to ML and OC has grown continuously over the past 20 years.China led with 254 articles.The most prominent journals include Gynecologic Oncology, Nature, Clinical Cancer Research, Cancer Research, and Journal of Clinical Oncology.Research hotspots are: (a) ML-driven OC biomarker discovery and personalized treatment; (b) ML in tumor microenvironment analysis and resistance prediction; (c) ML in imaging-based diagnosis and risk stratification; (d) ML in multicenter OC studies.ConclusionML in OC is currently in a developmental phase and shows promising potential for the future. This study provides researchers and clinicians with a more systematic understanding of research priorities and forthcoming developments in this area.
引用
收藏
页数:16
相关论文
共 60 条
[21]   Explainable machine learning model for predicting skeletal muscle loss during surgery and adjuvant chemotherapy in ovarian cancer [J].
Hsu, Wen-Han ;
Ko, Ai-Tung ;
Weng, Chia-Sui ;
Chang, Chih-Long ;
Jan, Ya-Ting ;
Lin, Jhen-Bin ;
Chien, Hung-Ju ;
Lin, Wan-Chun ;
Sun, Fang-Ju ;
Wu, Kun-Pin ;
Lee, Jie .
JOURNAL OF CACHEXIA SARCOPENIA AND MUSCLE, 2023, :2044-2053
[22]   A bibliometric and visual analysis of publications on artificial intelligence in colorectal cancer (2002-2022) [J].
Huang, Pan ;
Feng, Zongfeng ;
Shu, Xufeng ;
Wu, Ahao ;
Wang, Zhonghao ;
Hu, Tengcheng ;
Cao, Yi ;
Tu, Yi ;
Li, Zhengrong .
FRONTIERS IN ONCOLOGY, 2023, 13
[23]   Explainable discovery of disease biomarkers: The case of ovarian cancer to illustrate the best practice in machine learning and Shapley analysis [J].
Huang, Weitong ;
Suominen, Hanna ;
Liu, Tommy ;
Rice, Gregory ;
Salomon, Carlos ;
Barnard, Amanda S. .
JOURNAL OF BIOMEDICAL INFORMATICS, 2023, 141
[24]   Risk of diagnosis of ovarian cancer after raised serum CA 125 concentration: A prospective cohort study [J].
Jacobs, IJ ;
Skates, S ;
Davies, AP ;
Woolas, RP ;
Jeyerajah, A ;
Weidemann, P ;
Sibley, K ;
Oram, DH .
BMJ-BRITISH MEDICAL JOURNAL, 1996, 313 (7069) :1355-1358
[25]   Unraveling tumor-immune heterogeneity in advanced ovarian cancer uncovers immunogenic effect of chemotherapy [J].
Jimenez-Sanchez, Alejandro ;
Cybulska, Paulina ;
Mager, Katherine LaVigne ;
Koplev, Simon ;
Cast, Oliver ;
Couturier, Dominique-Laurent ;
Memon, Danish ;
Selenica, Pier ;
Nikolovski, Ines ;
Mazaheri, Yousef ;
Bykov, Yonina ;
Geyer, Felipe C. ;
Macintyre, Geoff ;
Gavarro, Lena Morrill ;
Drews, Ruben M. ;
Gill, Michael B. ;
Papanastasiou, Anastasios D. ;
Sosa, Ramon E. ;
Soslow, Robert A. ;
Walther, Tyler ;
Shen, Ronglai ;
Chi, Dennis S. ;
Park, Kay J. ;
Hollmann, Travis ;
Reis-Filho, Jorge S. ;
Markowetz, Florian ;
Beltrao, Pedro ;
Vargas, Hebert Alberto ;
Zamarin, Dmitriy ;
Brenton, James D. ;
Snyder, Alexandra ;
Weigelt, Britta ;
Sala, Evis ;
Miller, Martin L. .
NATURE GENETICS, 2020, 52 (06) :582-+
[26]  
Jm SL., 2024, Heliyon, V10, P9
[27]   Analysis of computer-aided diagnostics in the preoperative diagnosis of ovarian cancer: a systematic review [J].
Koch, Anna H. ;
Jeelof, Lara S. ;
Muntinga, Caroline L. P. ;
Gootzen, T. A. ;
van de Kruis, Nienke M. A. ;
Nederend, Joost ;
Boers, Tim ;
van der Sommen, Fons ;
Piek, Jurgen M. J. .
INSIGHTS INTO IMAGING, 2023, 14 (01)
[28]   Stromal cell ratio based on automated image analysis as a predictor for platinum-resistant recurrent ovarian cancer [J].
Lan, C. ;
Li, J. ;
Huang, X. ;
Heindl, A. ;
Wang, Y. ;
Yan, S. ;
Yuan, Y. .
BMC CANCER, 2019, 19 (1)
[29]   Contrast-enhanced CT radiomics for preoperative prediction of stage in epithelial ovarian cancer: a multicenter study [J].
Leng, Yinping ;
Kan, Ao ;
Wang, Xiwen ;
Li, Xiaofen ;
Xiao, Xuan ;
Wang, Yu ;
Liu, Lan ;
Gong, Lianggeng .
BMC CANCER, 2024, 24 (01)
[30]   Epithelial ovarian cancer: Evolution of management in the era of precision medicine [J].
Lheureux, Stephanie ;
Braunstein, Marsela ;
Oza, Amit M. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (04) :280-304