Machine learning in ovarian cancer: a bibliometric and visual analysis from 2004 to 2024

被引:0
作者
Zeng, Xian [1 ]
Li, Zude [2 ]
Dai, Lilin [1 ]
Li, Jiang [1 ,2 ]
Liao, Luqin [1 ]
Chen, Wei [1 ]
机构
[1] Guilin Med Univ, Affiliated Hosp, Dept Pharm, Guilin, Peoples R China
[2] Guilin Univ Technol, Fac Publ Adm, Guilin, Peoples R China
关键词
Machine learning; Deep learning; Ovarian cancer; Bibliometrics; Artificial intelligence; ARTIFICIAL-INTELLIGENCE; DIAGNOSIS; INTEGRATION; IMAGES; RISK;
D O I
10.1007/s12672-025-02416-3
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
ObjectiveOvarian cancer (OC) is a common malignant tumor in women, with poor prognosis and high mortality rates. Early diagnosis, screening, and prognostic prediction of OC have long been focal points and challenges in this field. In recent years, machine learning (ML) has gradually demonstrated its unique advantages in the early diagnosis, screening, and prognostic prediction of tumors, including OC.This study aims to analyze global development trends and research hotspots in the application of ML for OC, thereby providing a reference for future research directions.MethodsWe searched the Web of Science Core Collection (WoSCC) for all publications related to OC and ML from 2004 to 2024, conducting a quantitative analysis using VOSviewer, R software, and CiteSpace.ResultsA total of 777 articles were retrieved.The number of publications related to ML and OC has grown continuously over the past 20 years.China led with 254 articles.The most prominent journals include Gynecologic Oncology, Nature, Clinical Cancer Research, Cancer Research, and Journal of Clinical Oncology.Research hotspots are: (a) ML-driven OC biomarker discovery and personalized treatment; (b) ML in tumor microenvironment analysis and resistance prediction; (c) ML in imaging-based diagnosis and risk stratification; (d) ML in multicenter OC studies.ConclusionML in OC is currently in a developmental phase and shows promising potential for the future. This study provides researchers and clinicians with a more systematic understanding of research priorities and forthcoming developments in this area.
引用
收藏
页数:16
相关论文
共 60 条
[1]   Bibliometric analysis: A few suggestions (Part Two) [J].
Abdelwahab, Siddig Ibrahim ;
Taha, Manal Mohamed Elhassan ;
Farasani, Abdullah ;
Abdullah, Saleh M. ;
Moshi, Jobran M. ;
Alshahrani, Abrar Fahad ;
Khamjan, Nizar A. ;
Khired, Zenat A. ;
Assiri, Ahmad ;
Alqassmi, Ali Mohammed ;
Alhusayni, Amal Mayudh ;
Ibrahim, Ibrahim Abdel Aziz ;
Alshahrani, Saeed ;
Hassan, Waseem .
CURRENT PROBLEMS IN CARDIOLOGY, 2025, 50 (03)
[2]   Evaluating the Effectiveness of 2D and 3D CT Image Features for Predicting Tumor Response to Chemotherapy [J].
Abdoli, Neman ;
Zhang, Ke ;
Gilley, Patrik ;
Chen, Xuxin ;
Sadri, Youkabed ;
Thai, Theresa ;
Dockery, Lauren ;
Moore, Kathleen ;
Mannel, Robert ;
Qiu, Yuchen .
BIOENGINEERING-BASEL, 2023, 10 (11)
[3]   Early-Stage Detection of Ovarian Cancer Based on Clinical Data Using Machine Learning Approaches [J].
Ahamad, Md Martuza ;
Aktar, Sakifa ;
Uddin, Md Jamal ;
Rahman, Tasnia ;
Alyami, Salem A. ;
Al-Ashhab, Samer ;
Akhdar, Hanan Fawaz ;
Azad, A. K. M. ;
Moni, Mohammad Ali .
JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (08)
[4]   Artificial intelligence in gynecologic cancers: Current status and future challenges-A systematic review [J].
Akazawa, Munetoshi ;
Hashimoto, Kazunori .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2021, 120
[5]   Artificial Intelligence in Ovarian Cancer Diagnosis [J].
Akazawa, Munetoshi ;
Hashimoto, Kazunori .
ANTICANCER RESEARCH, 2020, 40 (08) :4795-4800
[6]   bibliometrix: An R-tool for comprehensive science mapping analysis [J].
Aria, Massimo ;
Cuccurullo, Corrado .
JOURNAL OF INFORMETRICS, 2017, 11 (04) :959-975
[7]   Artificial Intelligence in Cancer Research and Precision Medicine [J].
Bhinder, Bhavneet ;
Gilvary, Coryandar ;
Madhukar, Neel S. ;
Elemento, Olivier .
CANCER DISCOVERY, 2021, 11 (04) :900-915
[8]   Multimodal data integration using machine learning improves risk stratification of high-grade serous ovarian cancer [J].
Boehm, Kevin M. ;
Aherne, Emily A. ;
Ellenson, Lora ;
Nikolovski, Ines ;
Alghamdi, Mohammed ;
Vazquez-Garcia, Ignacio ;
Zamarin, Dmitriy ;
Roche, Kara Long ;
Liu, Ying ;
Patel, Druv ;
Aukerman, Andrew ;
Pasha, Arfath ;
Rose, Doori ;
Selenica, Pier ;
Causa Andrieu, Pamela I. ;
Fong, Chris ;
Capanu, Marinela ;
Reis-Filho, Jorge S. ;
Vanguri, Rami ;
Veeraraghavan, Harini ;
Gangai, Natalie ;
Sosa, Ramon ;
Leung, Samantha ;
McPherson, Andrew ;
Gao, JianJiong ;
Lakhman, Yulia ;
Shah, Sohrab P. .
NATURE CANCER, 2022, 3 (06) :723-+
[9]   Effect of Screening on Ovarian Cancer Mortality The Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Randomized Controlled Trial [J].
Buys, Saundra S. ;
Partridge, Edward ;
Black, Amanda ;
Johnson, Christine C. ;
Lamerato, Lois ;
Isaacs, Claudine ;
Reding, Douglas J. ;
Greenlee, Robert T. ;
Yokochi, Lance A. ;
Kessel, Bruce ;
Crawford, E. David ;
Church, Timothy R. ;
Andriole, Gerald L. ;
Weissfeld, Joel L. ;
Fouad, Mona N. ;
Chia, David ;
O'Brien, Barbara ;
Ragard, Lawrence R. ;
Clapp, Jonathan D. ;
Rathmell, Joshua M. ;
Riley, Thomas L. ;
Hartge, Patricia ;
Pinsky, Paul F. ;
Zhu, Claire S. ;
Izmirlian, Grant ;
Kramer, Barnett S. ;
Miller, Anthony B. ;
Xu, Jian-Lun ;
Prorok, Philip C. ;
Gohagan, John K. ;
Berg, Christine D. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2011, 305 (22) :2295-2303
[10]   A landscape of globe research trends on minimally invasive glaucoma surgical techniques: a correspondence on bibliometrics analysis [J].
Cai, Danrui ;
Xu, Fangshi ;
Bai, Ling ;
Liu, Ziyao .
INTERNATIONAL JOURNAL OF SURGERY, 2024, 110 (12) :8195-8197