In confining large N theories with a θ angle such as four-dimensional SU(N) pure Yang-Mills theory, there are multiple metastable vacua and it makes sense to consider the parameter region of “large θ of order N” despite the fact that θ is a 2π-periodic parameter. We investigate this parameter region in the two-dimensional CPN−1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\mathbbm{CP}}^{N-1} $$\end{document} model by computing the partition function on T2. When θ/N is of order O0.1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathcal{O}(0.1) $$\end{document} or less, we get perfectly sensible results for the vacuum energies and decay rates of metastable vacua. However, when θ/N is of order O1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathcal{O}(1) $$\end{document}, we encounter a problem about saddle points that would give larger contributions to the partition function than the true vacuum. We discuss why it might not be straightforward to resolve this problem.