Convexity and the Shapley value of Bertrand oligopoly TU-games in β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}-characteristic function formConvexity and the Shapley value of Bertrand oligopoly TU-games in β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}...D. Hou et al.

被引:0
作者
Dongshuang Hou [1 ]
Aymeric Lardon [2 ]
Theo Driessen [3 ]
机构
[1] Northwestern Polytechnical University,Department of Applied Mathematics
[2] Université Jean Monnet,GATE Lyon Saint
[3] University of Twente,Etienne, UMR 5824 CNRS
关键词
Bertrand oligopoly; Transferable utility game; Convexity; Shapley value;
D O I
10.1007/s11238-024-10022-y
中图分类号
学科分类号
摘要
The Bertrand oligopoly situation with Shubik’s demand functions is modeled as a cooperative transferable utility game in β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}-characteristic function form. To achieve this, two sequential optimization problems are solved to describe the worth of each coalition in the associated Bertrand oligopoly transferable utility game. First, we show that these games are convex, indicating strong incentives for large-scale cooperation between firms. Second, the Shapley value of these games is fully determined by applying the linearity to a decomposition that involves the difference between two convex games and two non-essential games.
引用
收藏
页码:519 / 536
页数:17
相关论文
empty
未找到相关数据