Convexity and the Shapley value of Bertrand oligopoly TU-games in β\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}-characteristic function formConvexity and the Shapley value of Bertrand oligopoly TU-games in β\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}...D. Hou et al.
被引:0
作者:
Dongshuang Hou
论文数: 0引用数: 0
h-index: 0
机构:
Northwestern Polytechnical University,Department of Applied MathematicsNorthwestern Polytechnical University,Department of Applied Mathematics
Dongshuang Hou
[1
]
Aymeric Lardon
论文数: 0引用数: 0
h-index: 0
机构:
Université Jean Monnet,GATE Lyon SaintNorthwestern Polytechnical University,Department of Applied Mathematics
Aymeric Lardon
[2
]
Theo Driessen
论文数: 0引用数: 0
h-index: 0
机构:
University of Twente,Etienne, UMR 5824 CNRSNorthwestern Polytechnical University,Department of Applied Mathematics
Theo Driessen
[3
]
机构:
[1] Northwestern Polytechnical University,Department of Applied Mathematics
The Bertrand oligopoly situation with Shubik’s demand functions is modeled as a cooperative transferable utility game in β\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta$$\end{document}-characteristic function form. To achieve this, two sequential optimization problems are solved to describe the worth of each coalition in the associated Bertrand oligopoly transferable utility game. First, we show that these games are convex, indicating strong incentives for large-scale cooperation between firms. Second, the Shapley value of these games is fully determined by applying the linearity to a decomposition that involves the difference between two convex games and two non-essential games.