Normalized Solutions for a Sobolev Critical Fractional Schrodinger-Poisson System

被引:0
作者
He, Xiaoming [1 ]
Melgaard, Michael [2 ]
机构
[1] Minzu Univ China, Coll Sci, Beijing 100081, Peoples R China
[2] Univ Sussex, Dept Math, Brighton BN1 9QH, England
基金
中国国家自然科学基金;
关键词
Fractional Schrodinger-Poisson systems; Normalized solutions; Critical Sobolev exponent; Pohozaev manifold; POSITIVE SOLUTIONS; PRESCRIBED NORM; EQUATIONS; EXISTENCE; MULTIPLICITY; WAVES;
D O I
10.1007/s12220-025-02029-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the existence of normalized solutions for the fractional critical Schrodinger-Poisson system {(-Delta)(s)u+gamma phi u=lambda u+mu|u|(q-2)u+|u|(2s & lowast;-2)u, in R-3, (-Delta)(t)phi=u(2), in R-3, with the prescribed L-2 norm integral(R3)|u|(2)dx=a(2), where s,t is an element of(0,1) satisfies 2s+2t>3,q is an element of(2,2s & lowast;),a>0 and gamma,mu>0 are parameters. We establish several existence results for the L-2-subcritical regime, i.e., q is an element of(2,2+2(3-2t)/ 3); the L-2-critical regime, i.e., q=2+4s/3, and the L-2-supercritical regime, i.e., q is an element of(2+4s/3,2s & lowast;). These cases are studied under different assumptions imposed on the parameters gamma,mu and the mass a, respectively. To prove the above conclusions, we comprehensively apply the Jeanjean's theory, Pohozaev manifold method and Brezis-Nirenberg's technique skill to overcome the lack of compactness. This paper complements the paper by He, Meng and Squassina (Calc Var PDE, 63(6): 142, 2024); and the paper by Li and Teng (Mediterr J Math, 20(2):92, 2023), since we consider the normalized solutions of the fractional Schrodinger-Poisson problems with the Sobolev critical term, and the perturbation mu|u|(q-2)u is allowed to have L-2-critical growth, i.e., q=2+4s/3.
引用
收藏
页数:51
相关论文
共 53 条
[1]  
Alves C. O., 2021, arXiv, DOI [10.48550/arXiv.2107.13281, DOI 10.48550/ARXIV.2107.13281]
[2]   On Schrodinger-Poisson Systems [J].
Ambrosetti, Antonio .
MILAN JOURNAL OF MATHEMATICS, 2008, 76 (01) :257-274
[3]   On the Schrodinger-Maxwell equations under the effect of a general nonlinear term [J].
Azzollini, A. ;
d'Avenia, P. ;
Pomponio, A. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (02) :779-791
[4]   A natural constraint approach to normalized solutions of nonlinear Schrodinger equations and systems [J].
Bartsch, Thomas ;
Soave, Nicola .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (12) :4998-5037
[5]   Normalized solutions for a system of coupled cubic Schrodinger equations on R3 [J].
Bartsch, Thomas ;
Jeanjean, Louis ;
Soave, Nicola .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (04) :583-614
[6]   Normalized solutions of nonlinear Schrodinger equations [J].
Bartsch, Thomas ;
de Valeriola, Sebastien .
ARCHIV DER MATHEMATIK, 2013, 100 (01) :75-83
[7]   Existence and instability of standing waves with prescribed norm for a class of Schrodinger-Poisson equations [J].
Bellazzini, Jacopo ;
Jeanjean, Louis ;
Luo, Tingjian .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 107 :303-339
[8]   Scaling properties of functionals and existence of constrained minimizers [J].
Bellazzini, Jacopo ;
Siciliano, Gaetano .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (09) :2486-2507
[9]   Stable standing waves for a class of nonlinear Schrodinger-Poisson equations [J].
Bellazzini, Jacopo ;
Siciliano, Gaetano .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2011, 62 (02) :267-280
[10]   Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations [J].
Benci, V ;
Fortunato, D .
REVIEWS IN MATHEMATICAL PHYSICS, 2002, 14 (04) :409-420