Interface contact optimization and defect passivation via tyramine hydrochloride for efficient and stable inverted perovskite solar cells

被引:0
作者
Luo, Shizi [1 ,2 ]
Cao, Shuguang [1 ,2 ]
Bi, Zhuoneng [2 ]
Zheng, Yupeng [2 ]
Tauqeer, Haider Ali [1 ,2 ]
Zhuo, Yuling [1 ,2 ]
Ozerova, Victoria V. [3 ]
Emelianov, Nikita A. [3 ]
Slesarenko, Nikita A. [3 ]
Frolova, Lyubov A. [3 ]
Gutsev, Lavrenty G. [3 ,4 ]
Ramachandran, Bala R. [4 ]
Gutsev, Gennady L. [5 ]
Troshin, Pavel A. [3 ,6 ]
Xu, Xueqing [1 ,2 ]
机构
[1] Univ Sci & Technol China, Sch Energy Sci & Engn, Hefei 230026, Peoples R China
[2] Chinese Acad Sci, Guangzhou Inst Energy Convers, Key Lab Renewable Energy, Guangdong Prov Key Lab New & Renewable Energy Res, Guangzhou 510640, Peoples R China
[3] Russian Acad Sci, Fed Res Ctr Problems Chem Phys & Med Chem, RAS, FRC,PCP,MC, Semenov Av 1, Chernogolovka 142432, Moscow Region, Russia
[4] Louisiana Tech Univ, Inst Micromfg, Ruston, LA 71272 USA
[5] Florida A&M 711 Univ, Dept Phys, Tallahassee, FL 32307 USA
[6] HIT, Zhengzhou Res Inst, 26 Longyuan East 7th, Zhengzhou 450000, Henan, Peoples R China
基金
中国国家自然科学基金; 俄罗斯科学基金会;
关键词
Interface contact optimization; Defect passivation; Tyramine hydrochloride; NiOx/PTAA-based; Inverted perovskite solar cells; STABILITY;
D O I
10.1016/j.nanoen.2025.110944
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Efficient and stable inverted perovskite solar cells (PSCs) have combined many advantages which makes them particularly promising, with potential for rapid commercialization. However, there are still some challenges to overcome, including poor energy level alignment between perovskite and charge transport interlayers, the presence of deleterious interface defects, and the hydrophobicity of NiOx/PTAA-based double hole transport layer which seriously depress the improvement of the power conversion efficiency (PCE) and stability of PSCs. Presently, we utilized a passivating salt, tyramine hydrochloride (TACl), to modify the NiOx/PTAA film and both perovskite absorber interfaces. The modification using TACl resulted in improving wettability of the PTAA film through the formation of cid-base interactions at solvation model and nonconventional -OH & sdot;& sdot;& sdot;pi hydrogen bonds as well as optimizing energy level alignment, a lower rate of nonradiative recombination, and a markedly improved crystal quality of the perovskite films. Finally, we obtained a NiOx/PTAA-based inverted PSCs device with a PCE of 23.35 %. Our unencapsulated optimized devices maintained 90.2 % of their initial PCE after 1000 h of MPPT monitoring. In addition, we prepared the PSCs devices with the bandgaps of 1.56 eV and 1.68 eV, which achieved PCEs of 25.13 % and 22.36 %, respectively.
引用
收藏
页数:14
相关论文
共 54 条
[1]   A QUANTUM-THEORY OF MOLECULAR-STRUCTURE AND ITS APPLICATIONS [J].
BADER, RFW .
CHEMICAL REVIEWS, 1991, 91 (05) :893-928
[2]   High-performance large-area blade-coated perovskite solar cells with low ohmic loss for low lighting indoor applications [J].
Bi, Zhuoneng ;
Xu, Xueqing ;
Chen, Xia ;
Zhu, Yanqing ;
Liu, Chang ;
Yu, Hua ;
Zheng, Yupeng ;
Troshin, Pavel A. ;
Guerrero, Antonio ;
Xu, Gang .
CHEMICAL ENGINEERING JOURNAL, 2022, 446
[3]   Unraveling the Impact of Hole Transport Materials on Photostability of Perovskite Films and p-i-n Solar Cells [J].
Boldyreva, Aleksandra ;
Zhidkov, Ivan ;
Tsarev, Sergey ;
Akbulatov, Azat ;
Tepliakova, Marina M. ;
Fedotov, Yury S. ;
Bredikhin, Sergey, I ;
Postnova, Evgeniya Yu ;
Kurmaev, Ernst Zagidovich ;
Stevenson, Keith J. ;
Troshin, Pavel A. ;
Luchkin, Sergey Yu .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (16) :19161-19173
[4]   Imaging and quantifying non-radiative losses at 23% efficient inverted perovskite solar cells interfaces [J].
Cacovich, Stefania ;
Vidon, Guillaume ;
Degani, Matteo ;
Legrand, Marie ;
Gouda, Laxman ;
Puel, Jean-Baptiste ;
Vaynzof, Yana ;
Guillemoles, Jean-Francois ;
Ory, Daniel ;
Grancini, Giulia .
NATURE COMMUNICATIONS, 2022, 13 (01)
[5]   Synergistic effect of multifunctional MXene-nanosheet and naphthoquinone sulfonate toward high-performance perovskite solar cells and modules [J].
Cao, Shuguang ;
Gutsev, Lavrenty G. ;
Bi, Zhuoneng ;
Zheng, Yupeng ;
Xu, Xueqing ;
Zhu, Yanqing ;
Zhong, Liuwen ;
Zheng, Jieyuan ;
Xu, Gang ;
Troshin, Pavel A. ;
Liu, Shengzhong ;
Wang, Kai ;
Gonzales, Cedric ;
Guerrero, Antonio ;
Ren, Zhiwei ;
Li, Gang .
CHEMICAL ENGINEERING JOURNAL, 2023, 474
[6]   π-Interactions suppression of buried interface defects for efficient and stable inverted perovskite solar cells [J].
Chen, Hui ;
Yang, Jiabao ;
Cao, Qi ;
Wang, Tong ;
Pu, Xingyu ;
He, Xilai ;
Chen, Xingyuan ;
Li, Xuanhua .
NANO ENERGY, 2023, 117
[7]   Efficient and Stable Perovskite Solar Cells Using Bathocuproine Bilateral-Modified Perovskite Layers [J].
Chen, Renjie ;
Long, Biyu ;
Wang, Song ;
Liu, Yuning ;
Bai, Jueyao ;
Huang, Sumei ;
Li, Huili ;
Chen, Xiaohong .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (21) :24747-24755
[8]   Reduction of bulk and surface defects in inverted methylammonium- and bromide-free formamidinium perovskite solar cells [J].
Chen, Rui ;
Wang, Jianan ;
Liu, Zonghao ;
Ren, Fumeng ;
Liu, Sanwan ;
Zhou, Jing ;
Wang, Haixin ;
Meng, Xin ;
Zhang, Zheng ;
Guan, Xinyu ;
Liang, Wenxi ;
Troshin, Pavel A. ;
Qi, Yabing ;
Han, Liyuan ;
Chen, Wei .
NATURE ENERGY, 2023, 8 (08) :839-+
[9]   NiOx Nanocrystals with Tunable Size and Energy Levels for Efficient and UV Stable Perovskite Solar Cells [J].
Cui, Xiaxia ;
Jin, Junjun ;
Zou, Junjie ;
Tang, Qiang ;
Ai, Yuan ;
Zhang, Xiang ;
Wang, Zhen ;
Zhou, Yuan ;
Zhu, Zhenkun ;
Tang, Guanqi ;
Cao, Qiang ;
Liu, Sheng ;
Liu, Xiaowei ;
Tai, Qidong .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (31)
[10]   Applying a novel advanced oxidation process of biochar activated periodate for the efficient degradation of bisphenol A: Two nonradical pathways [J].
Dai, Jing ;
Wang, Ziqian ;
Chen, Kewen ;
Ding, Dahu ;
Yang, Shengjiong ;
Cai, Tianming .
CHEMICAL ENGINEERING JOURNAL, 2023, 453