An SoC-based CNN accelerator for face recognition using HWCK data scheduling

被引:0
作者
Tsai, Tsung-Han [1 ]
Hsu, Chin-Wei [1 ]
机构
[1] Natl Cent Univ, Dept Elect Engn, Taoyuan, Taiwan
关键词
System-on-chip; Deep learning; Face recognition; Deep neural network accelerator; Field-programmable gate array (FPGA);
D O I
10.1007/s00530-025-01838-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a face recognition system with a deep learning technique. The design uses the separable convolution accelerator with HWCK data scheduling. This scheduling method organizes the weight data according to the number of PEs (Processing Elements), considering hardware resources such as bandwidth and memory size. It is used to accelerate the deep separable convolution model through depthwise convolution, pointwise convolution, and batch normalization. We implement the system on a Xilinx ZCU106 development board, using an SoC architecture with ARM and FPGA to achieve a system-level access control design. The proposed accelerator achieves 222 FPS and 60.8 GOPS on the FaceNet-based network. The power consumption on the Xilinx ZCU106 board is 8.82 W with 6.89 GOPS/W performance. Additionally, our design can retain 94% accuracy on the VGGFACE2 dataset, and 99.2% on the LFW dataset. Compared to previous works, our design demonstrates superior real-time performance and energy efficiency.
引用
收藏
页数:16
相关论文
共 40 条
[1]  
Abdelouahab K, 2018, Arxiv, DOI arXiv:1806.01683
[2]   NullHop: A Flexible Convolutional Neural Network Accelerator Based on Sparse Representations of Feature Maps [J].
Aimar, Alessandro ;
Mostafa, Hesham ;
Calabrese, Enrico ;
Rios-Navarro, Antonio ;
Tapiador-Morales, Ricardo ;
Lungu, Iulia-Alexandra ;
Milde, Moritz B. ;
Corradi, Federico ;
Linares-Barranco, Alejandro ;
Liu, Shih-Chii ;
Delbruck, Tobi .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (03) :644-656
[3]   VGGFace2: A dataset for recognising faces across pose and age [J].
Cao, Qiong ;
Shen, Li ;
Xie, Weidi ;
Parkhi, Omkar M. ;
Zisserman, Andrew .
PROCEEDINGS 2018 13TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE & GESTURE RECOGNITION (FG 2018), 2018, :67-74
[4]  
Chang SE, 2021, INT S HIGH PERF COMP, P208, DOI [10.1109/HPCA51647.2021.00027, 10.1109/WRCSARA53879.2021.9612678]
[5]  
Chen YH, 2016, ISSCC DIG TECH PAP I, V59, P262, DOI 10.1109/ISSCC.2016.7418007
[6]  
Coskun M, 2017, 2017 INTERNATIONAL CONFERENCE ON MODERN ELECTRICAL AND ENERGY SYSTEMS (MEES), P376, DOI 10.1109/MEES.2017.8248937
[7]   Cross-Age Identity Difference Analysis Model Based on Image Pairs for Age Invariant Face Verification [J].
Du, Lingshuang ;
Hu, Haifeng .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (07) :2675-2685
[8]  
Howard AG, 2017, Arxiv, DOI arXiv:1704.04861
[9]   Angel-Eye: A Complete Design Flow for Mapping CNN Onto Embedded FPGA [J].
Guo, Kaiyuan ;
Sui, Lingzhi ;
Qiu, Jiantao ;
Yu, Jincheng ;
Wang, Junbin ;
Yao, Song ;
Han, Song ;
Wang, Yu ;
Yang, Huazhong .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2018, 37 (01) :35-47
[10]  
He KM, 2015, Arxiv, DOI [arXiv:1512.03385, 10.48550/ARXIV.1512.03385]