Ancestral lineages for a branching annihilating random walk

被引:0
作者
Oswald, Pascal [1 ]
机构
[1] Univ Basel, Spiegelgasse 1, CH-4051 Basel, Switzerland
关键词
Branching annihilating random walk; Ancestral lineages; Random walk in dynamic random environment;
D O I
10.1016/j.spa.2025.104648
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the ancestral lineages of individuals of a stationary discrete-time branching annihilating random walk (BARW) on the d-dimensional lattice Z(d). Each individual produces a Poissonian number of offspring with mean mu which then jump independently to a uniformly chosen site with a fixed distance R of their parent. Should two or more particles jump to the same site, all particles at that site get annihilated. By interpreting the ancestral lineage of such an individual as a random walk in a dynamical random environment, we obtain a law of large numbers and a functional central limit theorem for the ancestral lineage whenever the model parameters satisfy mu is an element of(1, e(2)) and R = R(mu) is large enough.
引用
收藏
页数:15
相关论文
共 16 条
[1]  
Bethuelsen SA, 2024, Arxiv, DOI arXiv:2410.14302
[2]   Local limit theorems for a directed random walk on the backbone of a supercritical oriented percolation cluster [J].
Bethuelsen, Stein Andreas ;
Birkner, Matthias ;
Depperschmidt, Andrej ;
Schluter, Timo .
ELECTRONIC JOURNAL OF PROBABILITY, 2023, 28 :1-54
[3]  
Birkner M, 2024, Arxiv, DOI arXiv:2403.08567
[4]  
Birkner M., 2025, Ann. Appl. Probab.
[5]  
Birkner M., 2021, Probabilistic Structures in Evolution, P291, DOI [10.4171/ECR/17-1/14,4331865, DOI 10.4171/ECR/17-1/14,4331865]
[6]  
Birkner M, 2024, Arxiv, DOI arXiv:2405.02090
[7]   Survival and complete convergence for a spatial branching system with local regulation [J].
Birkner, Matthias ;
Depperschmidt, Andrei .
ANNALS OF APPLIED PROBABILITY, 2007, 17 (5-6) :1777-1807
[8]   Random walks in dynamic random environments and ancestry under local population regulation [J].
Birkner, Matthias ;
Cerny, Jiri ;
Depperschmidt, Andrej .
ELECTRONIC JOURNAL OF PROBABILITY, 2016, 21
[9]   Directed random walk on the backbone of an oriented percolation cluster [J].
Birkner, Matthias ;
Cerny, Jiri ;
Depperschmidt, Andrej ;
Gantert, Nina .
ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18
[10]  
Durrett R., 2019, Probability: Theory and Examples, V49