Agroforlight: 3D light distribution modelling in agroforestry systems using high-resolution tree LiDAR scans

被引:0
作者
De Swaef, Tom [1 ]
Coudron, Willem [1 ,2 ]
Baeyens, Toon [3 ]
Calders, Kim [4 ]
Lootens, Peter [1 ]
Pardon, Paul [1 ]
Reubens, Bert [1 ]
van den Berge, Sanne [2 ,5 ]
De Frenne, Pieter [2 ]
Verheyen, Kris [2 ]
机构
[1] Res Inst Agr Fisheries & Food ILVO, Plant Sci Unit, Melle, Belgium
[2] Univ Ghent, Fac Biosci Engn, Dept Environm, Forest & Nat Lab, Gontrode, Belgium
[3] Univ Ghent, Fac Sci, Dept Math Comp Sci & Stat, Ghent, Belgium
[4] Univ Ghent, Fac Biosci Engn, Dept Environm, Q ForestLab, Ghent, Belgium
[5] Bos, Vlaanderen VZW, Gontrode, Belgium
关键词
Agroforestry; Light modelling; Decision support tools; Alley cropping; Precision management; Terrestrial LiDAR; TEMPERATE AGROFORESTRY; YIELD; PHOTOSYNTHESIS; AVAILABILITY; ENVIRONMENTS; COMPETITION; EFFICIENCY; CAPTURE; DIFFUSE; EUROPE;
D O I
10.1007/s10457-025-01216-6
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
In agroforestry systems, trees can facilitate crop growth but also enhance tree-crop competition, depending on factors like tree size and species, row and field orientation, crop species, and environmental conditions. In temperate Europe, light reduction from trees is a significant constraint on crop growth in agroforestry systems, with studies showing mixed effects on crop yield under varying shade. Whereas field experiments provide useful insights, they are often limited in scope, space and time, and cannot fully disentangle interacting factors for all theoretical combinations of, e.g., shade and soil moisture availability. Mathematical modeling offers a flexible approach to study agroforestry systems under a broader range of conditions, thereby allowing for higher spatiotemporal resolution. There is a need for tools that can simulate light conditions more accurately in agroforestry systems, accounting for the complex structure of real-world trees. Here we introduce an intuitive 3D modeling tool designed to simulate light availability at ground level in agroforestry systems, utilizing detailed quantitative structure models obtained from terrestrial LiDAR (Light detection and ranging) scans of real trees. The tool consists of an online application, accessible at https://agroforestry.ilvo.be/agroforlight/, and the R package agroforlight. We showcase its potential in a case study on how tree size and row orientation impact light availability for inter-crops in alley cropping systems. By combining architectural detail with high-speed light computation, the model effectively simulates realistic agroforestry systems at high spatio-temporal resolution. Our model successfully replicates previous experimental findings and trends, enables definition of new hypotheses and provides valuable quantitative insights for precision agriculture practices to enhance agroforestry performance.
引用
收藏
页数:20
相关论文
共 54 条
[1]   Wheat and barley cultivars show plant traits acclimation and increase grain yield under simulated shade in Mediterranean conditions [J].
Arenas-Corraliza, M. Guadalupe ;
Lopez-Diaz, M. Lourdes ;
Rolo, Victor ;
Moreno, Gerardo .
JOURNAL OF AGRONOMY AND CROP SCIENCE, 2021, 207 (01) :100-119
[2]   Sugar beet development under dynamic shade environments in temperate conditions [J].
Artru, S. ;
Lassois, L. ;
Vancutsem, F. ;
Reubens, B. ;
Garre, S. .
EUROPEAN JOURNAL OF AGRONOMY, 2018, 97 :38-47
[3]  
Artru S., 2017, Impact of spatio-temporal shade on crop growth and productivity, perspectives for temperate agroforestry
[4]   Impact of spatio-temporal shade dynamics on wheat growth and yield, perspectives for temperate agroforestry [J].
Artru, Sidonie ;
Garre, Sarah ;
Dupraz, Christian ;
Hiel, Marie-Pierre ;
Blitz-Frayret, Celine ;
Lassois, Ludivine .
EUROPEAN JOURNAL OF AGRONOMY, 2017, 82 :60-70
[5]   Hydraulic redistribution study in two native tree species of agroforestry parklands of West African dry savanna [J].
Bayala, Jules ;
Heng, Lee Kheng ;
van Noordwijk, Meine ;
Ouedraogo, Sibiri Jean .
ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY, 2008, 34 (03) :370-378
[6]   Terrestrial laser scanning in forest ecology: Expanding the horizon [J].
Calders, Kim ;
Adams, Jennifer ;
Armston, John ;
Bartholomeus, Harm ;
Bauwens, Sebastien ;
Bentley, Lisa Patrick ;
Chave, Jerome ;
Danson, F. Mark ;
Demol, Miro ;
Disney, Mathias ;
Gaulton, Rachel ;
Moorthy, Sruthi M. Krishna ;
Levick, Shaun R. ;
Saarinen, Ninni ;
Schaaf, Crystal ;
Stovall, Atticus ;
Terryn, Louise ;
Wilkes, Phil ;
Verbeeck, Hans .
REMOTE SENSING OF ENVIRONMENT, 2020, 251
[7]   Realistic Forest Stand Reconstruction from Terrestrial LiDAR for Radiative Transfer Modelling [J].
Calders, Kim ;
Origo, Niall ;
Burt, Andrew ;
Disney, Mathias ;
Nightingale, Joanne ;
Raumonen, Pasi ;
Akerblom, Markku ;
Malhi, Yadvinder ;
Lewis, Philip .
REMOTE SENSING, 2018, 10 (06)
[8]   Nondestructive estimates of above-ground biomass using terrestrial laser scanning [J].
Calders, Kim ;
Newnham, Glenn ;
Burt, Andrew ;
Murphy, Simon ;
Raumonen, Pasi ;
Herold, Martin ;
Culvenor, Darius ;
Avitabile, Valerio ;
Disney, Mathias ;
Armston, John ;
Kaasalainen, Mikko .
METHODS IN ECOLOGY AND EVOLUTION, 2015, 6 (02) :198-208
[9]   The central agroforestry hypothesis: The trees must acquire resources that the crop would not otherwise acquire [J].
Cannell, MGR ;
VanNoordwijk, M ;
Ong, CK .
AGROFORESTRY SYSTEMS, 1996, 34 (01) :27-31
[10]   Climate change mitigation and adaptation in agriculture: Why agroforestry should be part of the solution [J].
Cardinael, Remi ;
Cadisch, Georg ;
Gosme, Marie ;
Oelbermann, Maren ;
van Noordwijk, Meine .
AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2021, 319