A review of laser-spectroscopy-based gas sensing techniques for trace formaldehyde detection

被引:0
作者
Yang, Xiu [1 ]
Chen, Baisong [2 ]
Liang, Yize [2 ]
Hou, Jiajia [2 ]
Zhang, Dacheng [2 ]
Li, Biao [3 ]
Sampaolo, Angelo [4 ,5 ,6 ]
Patimisco, Pietro [4 ,5 ,6 ]
Spagnolo, Vincenzo [4 ,5 ,6 ]
Yin, Xukun [1 ,2 ,7 ]
机构
[1] Xidian Univ, Hangzhou Inst Technol, Hangzhou 311200, Peoples R China
[2] Xidian Univ, Sch Optoelect Engn, Xian 710071, Peoples R China
[3] Chongqing Univ Posts & Telecommun, Sch Optoelect Engn, Chongqing Key Lab Optoelect Informat Sensing & Tra, Chongqing 400065, Peoples R China
[4] Univ Bari, Dipartimento Interateneo Fis, PolySense Lab, I-70126 Bari, Italy
[5] Politecn Bari, I-70126 Bari, Italy
[6] PolySense Innovat srl, Via Amendola 173, I-70126 Bari, Italy
[7] Xi An Jiao Tong Univ, State Key Lab Elect Insulat & Power Equipment, Xian 710071, Peoples R China
关键词
Formaldehyde detection; Absorption spectroscopy; Trace gas sensors; ENHANCED PHOTOACOUSTIC-SPECTROSCOPY; INTERBAND CASCADE LASER; ABSORPTION-SPECTROSCOPY; DIODE-LASER; SENSITIVE DETECTION; NITROGEN-DIOXIDE; CAVITY; SENSOR; CHROMATOGRAPHY; WAVELENGTH;
D O I
10.1016/j.measurement.2025.117656
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Formaldehyde (H2CO) is a colorless gas with a strong irritating odor, widely used in furniture manufacturing and house decoration. Already at concentration in the few ppm range, H2CO represents great harm to human health, therefore, accurate measurement of formaldehyde concentration is of great significance for human safety. In this review, the laser-based spectroscopic techniques for formaldehyde gas detection were investigated, such as cavity ring-down spectroscopy (CRDS), cavity-enhanced absorption spectroscopy (CEAS), integrated cavity output spectroscopy (ICOS), tunable diode laser absorption spectroscopy (TDLAS), multi-pass cell absorption spectroscopy (MC), differential optical absorption spectroscopy (DOAS), non-dispersive absorption spectroscopy (NDAS), and photoacoustic spectroscopy (PAS). Among these techniques, the lowest detection limit achieved with an infrared laser source resulted in 28 ppt with a signal integration time of 40 s, and 210 ppt with an integration time of 30 s when using an ultraviolet light source.
引用
收藏
页数:13
相关论文
共 112 条
  • [1] Optical sensor for real-time monitoring of CO2 laser welding process
    Ancona, A
    Spagnolo, V
    Lugarà, PM
    Ferrara, M
    [J]. APPLIED OPTICS, 2001, 40 (33) : 6019 - 6025
  • [2] Photoacoustic spectroscopy of formaldehyde with tunable laser radiation at the parts per billion level
    Angelmahr, M.
    Miklos, A.
    Hess, P.
    [J]. APPLIED PHYSICS B-LASERS AND OPTICS, 2006, 85 (2-3): : 285 - 288
  • [3] [Anonymous], 2014, Cavity-Enhanced Spectrosc. Sens.
  • [4] [Anonymous], 1989, FORMALDEHYDE
  • [5] B. ISAC, 1994, Differential optical absorption spectroscopy (DOAS)
  • [6] Mid infrared quantum cascade laser operating in pure amplitude modulation for background-free trace gas spectroscopy
    Bidaux, Yves
    Bismuto, Alfredo
    Patimisco, Pietro
    Sampaolo, Angelo
    Gresch, Tobias
    Strubi, Gregory
    Blaser, Stephane
    Tittel, Frank K.
    Spagnolo, Vincenzo
    Muller, Antoine
    Faist, Jerome
    [J]. OPTICS EXPRESS, 2016, 24 (23): : 26464 - 26471
  • [7] Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: instrument characterization and reference data for atmospheric remote-sensing in the 230-2380 nm region
    Bogumil, K
    Orphal, J
    Homann, T
    Voigt, S
    Spietz, P
    Fleischmann, OC
    Vogel, A
    Hartmann, M
    Kromminga, H
    Bovensmann, H
    Frerick, J
    Burrows, JP
    [J]. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2003, 157 (2-3) : 167 - 184
  • [8] PHOTOACOUSTIC DETECTION OF FORMALDEHYDE AS A MINORITY COMPONENT IN GAS-MIXTURES
    BOUTONNAT, M
    GILMORE, DA
    KEILBACH, KA
    OLIPHANT, N
    ATKINSON, GH
    [J]. APPLIED SPECTROSCOPY, 1988, 42 (08) : 1520 - 1524
  • [9] Multi-pass absorption spectroscopy for H2O2 detection using a CW DFB-QCL
    Cao, Yingchun
    Sanchez, Nancy P.
    Jiang, Wenzhe
    Ren, Wei
    Lewicki, Rafal
    Jiang, Dongfang
    Griffin, Robert J.
    Tittel, Frank K.
    [J]. ADVANCED OPTICAL TECHNOLOGIES, 2014, 3 (5-6) : 549 - 558
  • [10] [曹渊 Cao Yuan], 2019, [应用光学, Journal of Applied Optics], V40, P1152