Estimation and analysis of CO2 column concentrations (XCO2) in the Yangtze River Delta of China based on multi-source data and machine learning

被引:1
作者
Chen, Chunmei [1 ,2 ]
Chen, Xiaomei [3 ]
Liu, Qiong [4 ]
Zhang, Weiyu [4 ]
Chen, Yonghang [4 ]
Ou, Yuhuan [4 ]
Liu, Xin [4 ]
Yang, Huiyun [4 ]
机构
[1] Zhejiang Sci Tech Univ, Coll Civil Engn & Architecture, Hangzhou, Peoples R China
[2] Zhejiang Engn Res Ctr Green & Low Carbon Technol A, Hangzhou, Peoples R China
[3] Lishui Univ, Coll Math & Comp Sci, Lishui, Peoples R China
[4] Donghua Univ, Coll Environm Sci & Engn, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Random forest; GOSAT; Influencing factors; NDVI; Carbon emission; XCO2; GOSAT SWIR XCO2; RETRIEVAL ALGORITHM; GREENHOUSE GASES; ATMOSPHERIC CO2; OBSERVING NETWORK; AIRCRAFT; VALIDATION; OCO-2; XCH4; SATELLITE;
D O I
10.1016/j.apr.2025.102528
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Carbon dioxide (CO2) is one of the most significant greenhouse gases in the atmosphere and plays a crucial role in global warming. Currently, the temporal resolution for XCO2 from the satellite is low, and the ground-based XCO2 observation station is limited. There is an urgent need for a XCO2 dataset with high temporal and spatial resolution. Consequently, based on the random forest algorithm, we have developed an optimized model for predicting XCO2 with a spatial resolution of 0.25 degrees x 0.25 degrees and a temporal resolution of 1 h for the Yangtze River Delta in 2020. The multi-source data, such as the ground-observation XCO2 from the TCCON, as well as meteorological parameters, aerosols, surface vegetation index, and emission source factors from the ERA5, MERRA-2, MODIS, and MEIC datasets, were used in this study. The results indicate that the random forest model is well-suited for predicting XCO2. Specifically, the model performs more optimally when utilizing 20 variables, including solar zenith angle, normalized vegetation index, and carbon emission data as input parameters with the prediction RMSE and R2 of 1.031 x 10-6 and 0.940. The MAE for predicted XCO2 at Xianghe and Hefei stations are 0.628 x 10-6 and 0.550 x 10-6, respectively, marking a substantial increase in accuracy compared to GOSAT data. In 2020, daily variations of XCO2 follow a pattern of higher concentrations at night and lower concentrations during the day, negatively correlating with changes in the atmospheric boundary layer height. The intermonthly and seasonal variations reveal smaller concentrations in summer and higher concentrations in winter. The minimum concentration occurs in July at 409.64 x 10-6, while the maximum concentration occurs in November at 413.11 x 10-6. Spatially, XCO2 is higher in the northern areas and lower in the southern regions, showing a negative correlation with the NDVI and a positive correlation with anthropogenic carbon emissions. The XCO2 dataset calculated in this study with continuous spatial and temporal resolutions could address the limitations of satellite products with low temporal resolution and a limited number of ground observation stations.
引用
收藏
页数:15
相关论文
共 88 条
[1]   Analysis of 13C and 18O isotope data of CO2 in CARIBIC aircraft samples as tracers of upper troposphere/lower stratosphere mixing and the global carbon cycle [J].
Assonov, S. S. ;
Brenninkmeijer, C. A. M. ;
Schuck, T. J. ;
Taylor, P. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (17) :8575-8599
[2]   HDO/H2O ratio retrievals from GOSAT [J].
Boesch, H. ;
Deutscher, N. M. ;
Warneke, T. ;
Byckling, K. ;
Cogan, A. J. ;
Griffith, D. W. T. ;
Notholt, J. ;
Parker, R. J. ;
Wang, Z. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2013, 6 (03) :599-612
[3]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[4]   Civil Aircraft for the regular investigation of the atmosphere based on an instrumented container: The new CARIBIC system [J].
Brenninkmeijer, C. A. M. ;
Crutzen, P. ;
Boumard, F. ;
Dauer, T. ;
Dix, B. ;
Ebinghaus, R. ;
Filippi, D. ;
Fischer, H. ;
Franke, H. ;
Friess, U. ;
Heintzenberg, J. ;
Helleis, F. ;
Hermann, M. ;
Kock, H. H. ;
Koeppel, C. ;
Lelieveld, J. ;
Leuenberger, M. ;
Martinsson, B. G. ;
Miemczyk, S. ;
Moret, H. P. ;
Nguyen, H. N. ;
Nyfeler, P. ;
Oram, D. ;
O'Sullivan, D. ;
Penkett, S. ;
Platt, U. ;
Pupek, M. ;
Ramonet, M. ;
Randa, B. ;
Reichelt, M. ;
Rhee, T. S. ;
Rohwer, J. ;
Rosenfeld, K. ;
Scharffe, D. ;
Schlager, H. ;
Schumann, U. ;
Slemr, F. ;
Sprung, D. ;
Stock, P. ;
Thaler, R. ;
Valentino, F. ;
van Velthoven, P. ;
Waibel, A. ;
Wandel, A. ;
Waschitschek, K. ;
Wiedensohler, A. ;
Xueref-Remy, I. ;
Zahn, A. ;
Zech, U. ;
Ziereis, H. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 (18) :4953-4976
[5]   Toward accurate CO2 and CH4 observations from GOSAT [J].
Butz, A. ;
Guerlet, S. ;
Hasekamp, O. ;
Schepers, D. ;
Galli, A. ;
Aben, I. ;
Frankenberg, C. ;
Hartmann, J. -M. ;
Tran, H. ;
Kuze, A. ;
Keppel-Aleks, G. ;
Toon, G. ;
Wunch, D. ;
Wennberg, P. ;
Deutscher, N. ;
Griffith, D. ;
Macatangay, R. ;
Messerschmidt, J. ;
Notholt, J. ;
Warneke, T. .
GEOPHYSICAL RESEARCH LETTERS, 2011, 38
[6]   Optimization of the OCO-2 Cloud Screening Algorithm and Evaluation against MODIS and TCCON Measurements over Land Surfaces in Europe and Japan [J].
Chen, Sijie ;
Wang, Shuaibo ;
Su, Lin ;
Dong, Changzhe ;
Ke, Ju ;
Zheng, Zhuofan ;
Cheng, Chonghui ;
Tong, Bowen ;
Liu, Dong .
ADVANCES IN ATMOSPHERIC SCIENCES, 2020, 37 (04) :387-398
[7]   Decoding spatiotemporal dynamics in atmospheric CO2 in Chinese cities: Insights from satellite remote sensing and geographically and temporally weighted regression analysis [J].
Chen, Xiuzhen ;
He, Qingqing ;
Ye, Tong ;
Liang, Youjia ;
Li, Yubiao .
SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 908
[8]  
China S.C.O., 2021, Opinions on completely, accurately and completely implementing the new development concept and doing a good job in carbon neutrality
[9]   Atmospheric carbon dioxide retrieved from the Greenhouse gases Observing SATellite (GOSAT): Comparison with ground-based TCCON observations and GEOS-Chem model calculations [J].
Cogan, A. J. ;
Boesch, H. ;
Parker, R. J. ;
Feng, L. ;
Palmer, P. I. ;
Blavier, J. -F. L. ;
Deutscher, N. M. ;
Macatangay, R. ;
Notholt, J. ;
Roehl, C. ;
Warneke, T. ;
Wunch, D. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117
[10]  
Deng A.J., 2020, China Environ. Sci., V23, P319, DOI [10.11834/jrs.20208324, DOI 10.11834/JRS.20208324]