Phase Transformation and Electrocatalytic CO2 Reduction in Ternary Au-Ag-Cu System

被引:0
作者
Zhang, Yu [1 ]
Li, Hui [1 ]
Yan, Xintong [1 ]
Ye, Yonghui [1 ]
Ren, Qianqian [1 ]
Hu, Shi [1 ]
机构
[1] Tianjin Univ, Sch Sci, Dept Chem, Tianjin Key Lab Mol Optoelect Sci, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; reduction; crystal structure; grain boundaries; phase transformations; surface segregation; ELECTROCHEMICAL REDUCTION; ELECTROREDUCTION; NANOSTRUCTURES;
D O I
10.1002/smll.202412395
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study presents a two-step wet-chemistry method for synthesizing AuAgCux nanoparticles (NPs) using AuAg NP seeds. In-depth research investigates how composition and temperature interact to drive phase transformations, linking composition, structure, and catalytic function. These findings reveal that the alloying process exhibits unique composition-dependent behavior under heat treatment, resulting in a transformation sequence that progresses from a ternary alloy to a binary alloy, and ultimately to an ordered structure as composition varies. In this process, silver tends to migrate away from the stable AuAg alloy, diffusing outward to the surface, while copper diffuses inward, forming an AuCu alloy. CO2 reduction experiments demonstrate that the Faradaic efficiency of CO (FECO) can be finely tuned throughout the entire ternary system. Additionally, these results highlight the crucial roles of the AuCu phase and the density of grain boundaries (GB) in enhancing overall catalytic activity. This work not only sheds light on the complex interactions within ternary alloy systems but also provides valuable insights for designing more efficient electrochemical catalysts for CO2 reduction.
引用
收藏
页数:10
相关论文
共 41 条
[1]   Tuning the Metal-Adsorbate Chemical Bond through the Ligand Effect on Platinum Subsurface Alloys [J].
Anniyev, Toyli ;
Kaya, Sarp ;
Rajasekaran, Srivats ;
Ogasawara, Hirohito ;
Nordlund, Dennis ;
Nilsson, Anders .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (31) :7724-7728
[2]   Electrochemical CO2 reduction on Au surfaces: mechanistic aspects regarding the formation of major and minor products [J].
Cave, Etosha R. ;
Montoya, Joseph H. ;
Kuhl, Kendra P. ;
Abram, David N. ;
Hatsukade, Toru ;
Shi, Chuan ;
Hahn, Christopher ;
Norskov, Jens K. ;
Jaramillo, Thomas F. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (24) :15856-15863
[3]   A few basic concepts in electrochemical carbon dioxide reduction [J].
Chan, Karen .
NATURE COMMUNICATIONS, 2020, 11 (01)
[4]   Electrochemical reduction of carbon dioxide to multicarbon (C2+) products: challenges and perspectives [J].
Chang, Bin ;
Pang, Hong ;
Raziq, Fazal ;
Wang, Sibo ;
Huang, Kuo-Wei ;
Ye, Jinhua ;
Zhang, Huabin .
ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (11) :4714-4758
[5]  
Chen Z., 2024, Angew. Chem., V63
[6]   Global monthly gridded atmospheric carbon dioxide concentrations under the historical and future scenarios [J].
Cheng, Wei ;
Dan, Li ;
Deng, Xiangzheng ;
Feng, Jinming ;
Wang, Yongli ;
Peng, Jing ;
Tian, Jing ;
Qi, Wei ;
Liu, Zhu ;
Zheng, Xinqi ;
Zhou, Demin ;
Jiang, Sijian ;
Zhao, Haipeng ;
Wang, Xiaoyu .
SCIENTIFIC DATA, 2022, 9 (01)
[7]   Solar-Driven Electrochemical CO2Reduction with Heterogeneous Catalysts [J].
Creissen, Charles E. ;
Fontecave, Marc .
ADVANCED ENERGY MATERIALS, 2021, 11 (43)
[8]   Electrochemical Reduction of CO2 at Functionalized Au Electrodes [J].
Fang, Yuxin ;
Flake, John C. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (09) :3399-3405
[9]   Improving CO2-to-C2+Product Electroreduction Efficiency via Atomic Lanthanide Dopant-Induced Tensile-Strained CuOx Catalysts [J].
Feng, Jiaqi ;
Wu, Limin ;
Liu, Shoujie ;
Xu, Liang ;
Song, Xinning ;
Zhang, Libing ;
Zhu, Qinggong ;
Kang, Xinchen ;
Sun, Xiaofu ;
Han, Buxing .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (17) :9857-9866
[10]   A Direct Grain-Boundary-Activity Correlation for CO Electroreduction on Cu Nanoparticles [J].
Feng, Xiaofeng ;
Jiang, Kaili ;
Fan, Shoushan ;
Kanan, Matthew W. .
ACS CENTRAL SCIENCE, 2016, 2 (03) :169-174